PARTITIONS INTO POWERS OF AN ALGEBRAIC NUMBER

MIKULÁŠ ZINDULKA

Integer partitions are the central object of study in additive number theory. For a fixed subset S of the positive integers $\mathbb N$, one can investigate the properties of partitions of a given positive integer n into parts from S . When S is the set of non-negative powers of a fixed positive integer b , we obtain a class of partitions called the b-ary partitions.

A straightforward generalization is to fix a real number β and consider partitions of the form

(1)
$$
\alpha = a_n \beta^n + a_{n-1} \beta^{n-1} + \dots + a_1 \beta + a_0,
$$

where α is a real number. This notion is closely related to that of β -expansions, except that we do not take the "digits" a_i from a fixed finite alphabet but allow them to be arbitrary non-negative integers.

Let p_β denote the *partition function* associated with β , so that by definition, $p_\beta(\alpha)$ is the number of partitions of α into powers of β as in (1). If we want to study the properties of this function for a given β , it is natural to require that $p_\beta(\alpha)$ should be finite for every α in \mathbb{R} . A sufficient condition for this to be the case is clearly $\beta > 1$, but this condition is not necessary. In fact, it is easy to observe that for β transcendental, $p_{\beta}(\alpha)$ is always 0 or 1. When β is an algebraic number, it is sufficient for one of its conjugates to be greater than 1. Our first theorem shows that this condition is also necessary in the case when β is of degree two.

Theorem 1. Let β be a real root of a quadratic polynomial $Ax^2 + Bx + C$. Then $p_\beta(\alpha)$ is finite for every real α if and only if at least one of the conjugates β and β' is greater than 1.

If β satisfies the condition from Theorem 1, what can we say about the range of the function p_β ? The answer, under some additional constraints, is provided by our second theorem. We denote by Tr β and N β the trace and norm of β , respectively. Recall that a totally real algebraic integer is called *totally positive* if all its conjugates are positive.

Theorem 2. If a totally positive quadratic integer β satisfies

(2) Tr β ≤ N β < 2 Tr β,

then for every integer $n \geq 0$,

(3)
$$
p_{\beta}((\text{Tr}\,\beta)\beta^{n}) = n+1.
$$

Let $K = \mathbb{Q}(\sqrt{2})$ D), where $D > 0$ is a square-free integer. It is not difficult to show that there exist infinitely many totally positive integral elements β of K satisfying (2). Therefore, we immediately obtain the following corollary.

Corollary. In a real quadratic field $K = \mathbb{Q}(\sqrt{\frac{m}{\epsilon}})$ D), there exist infinitely many β such that p_{β} attains all non-negative integer values.

Next, we discuss our results in a broader context. The asymptotic behavior of the function $p_b(n)$ for a rational integer $b \geq 2$ was investigated by Mahler [Ma], who proved the asymptotic equality

(4)
$$
\log p_b(n) \sim \frac{(\log n)^2}{2 \log b}.
$$

An analogous problem for an arbitrary real $\beta > 1$ was considered by de Bruijn [Br], whose work was further improved by Pennington [Pe]. If one defines $P_\beta(x)$ as the number of solutions of the inequality

(5)
$$
a_n\beta^n + a_{n-1}\beta^n + \cdots + a_1\beta + a_0 < x
$$

in non-negative integers, then

(6)
$$
\log (P_{\beta}(x) - P_{\beta}(x-1)) \sim \log P_{\beta}(x) \sim \frac{(\log x)^2}{2 \log \beta}
$$

It follows from (4) that $p_b(n)$ grows roughly as $\exp((\log n)^2)$, faster than any polynomial, and its range is therefore a set of density zero. In view of this, Theorem 2 and its corollary seem quite surprising.

.

The function p_b satisfies the recurrence relations

(7)
$$
p_b(nb) = p_b(nb+1) = \cdots = p_b(nb+(b-1)),
$$
 $p_b(nb) = p_b((n-1)b) + p_b(n),$
which easily generalize to our setting:

(8)
$$
p_{\beta}(\alpha) = \begin{cases} p_{\beta}(\alpha - 1) + p_{\beta}(\alpha/\beta), & \text{if } \beta \text{ divides } \alpha \text{ in } \mathbb{Z}[\beta], \\ p_{\beta}(\alpha - 1), & \text{otherwise.} \end{cases}
$$

Some congruence properties of the binary partition function were discovered by Churchhouse [Ch], while the case of an arbitrary integer $b \geq 2$ was studied by Zmija [Zm]. Let us explicitly mention only one of these results: If $n = a_0 + a_1\beta +$ $\cdots + a_s \beta^s$ is the expansion of *n* in base *b*, then

(9)
$$
p_b(bn) \equiv \prod_{j=0}^s (a_j + 1) \pmod{b}.
$$

No similar identity is known when β is not an integer. It appears that qualitative properties of partitions into powers of an algebraic number β have not been treated anywhere in literature.

REFERENCES

- [Ma] K. Mahler, On a special functional equation, J. London Math. Soc., 15 (1940), 115–123.
- [Br] N. G. de Bruijn, On Mahler's partition problem, Proc. Kon. Ned. Akad. v. Wet. Amsterdam, 51 (1948), 659–669.
- [Pe] W. B. Pennington, On Mahler's partition problem, Ann. of Math., 57 (1953), 531–546.
- [Ch] R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc., 66 (1969), 371–376
- $[Zm]$ B. Zmija, Recurrence sequences connected with the m-ary partition function and their divisibility properties, J. Number Theory 211 (2020), 322–370