Title: Values of binary partition function represented by a sum of three squares

Speaker: Maciej Ulas

Affiliation: Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Poland

Abstract: Let m be a positive integer and $b_m(n)$ be the number of partitions of n with parts being powers of 2, where each part can take m colors. We show that if $m = 2^k - 1$, then there exists the natural density of integers n such that $b_m(n)$ can not be represented as a sum of three squares and it is equal to 1/12 for k = 1, 2 and 1/6 for $k \ge 3$. In particular, for m = 1the equation $b_1(n) = x^2 + y^2 + z^2$ has a solution in integers if and only if n is not of the form $2^{2k+2}(8s+2t_s+3)+i$ for i = 0, 1 and k, s are non-negative integers, and where t_n is the nth term in the Prouhet-Thue-Morse sequence. A similar characterization is obtained for the solutions in n of the equation $b_{2^k-1}(n) = x^2 + y^2 + z^2$.

This is joint work with Bartosz Sobolewski (Jagiellonian University).