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Abstract

In this talk, we build upon the work of Hollander [2] and uncover new criteria
allowing us to decide when the set of representations of natural numbers in a greedy
numeration system is a regular language.

1 Introduction and definitions

A sequence (Un)n∈N satisfying the conditions

(i) U(0) = 1 (ii) ∀n ∈ N, U(n+ 1) > U(n) (iii) ∃C ∈ N, ∀n ∈ N,
Un+1

Un
≤ C

can be used to build a numeration system as follows. Let n be a natural number to be
represented and l ∈ N be such that Ul ≤ n < Ul+1, or l = −1 if n = 0. Set rl = n, and
then, if ri is defined and i ≥ 0, set

ai =

⌊
ri
Ui

⌋
and ri−1 = ri − aiUi.

Then the function rep: N → {0, . . . , C − 1}∗, n 7→ al · · · a0, with C chosen minimal, is the
representation function in the numeration system associated with the sequence U , and it
satisfies

rep(n) = al · · · a0 =⇒ n =

l∑
i=0

aiUi.

This process has been extensively studied (see [1], section 2.2.3 for an overview), with
some particular choices of U corresponding to more well-known numeration systems: Un =
bn corresponds to the usual base b numeration system, and the case where U is the Fibonacci
sequence corresponds to a numeration system known as the Zeckendorf numeration system.
One can study the language of the numeration system, defined by LU = {rep(n) : n ∈ N}.
This language is regular for the two examples above, but it is not when we consider the
sequence Un = n2, as proven by Shallit [5]. One can then ask whether we can characterize
the sequences U for which the language LU is regular.
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2 The work of Hollander

This question was introduced by Shallit [5], then studied by Hollander [2]. Shallit proved
that U must be a linear recurrence sequence for LU to be regular. A simpler proof was
given by Loraud [3] using tools from formal language theory.

Hollander’s work introduced a different set of tools. He first reduced the problem to
proving the regularity of the set

MaxlgLU = {w ∈ LU : v ∈ LU , |v| = |w| =⇒ v ≼ w}

where ≼ is the lexicographic order. This simplifies the reasoning, as MaxlgLU is a language
with exactly one word of each length, allowing us to use specific criteria for regularity.

In the case where limn→∞
Un+1

Un
= β > 1 (this is called the dominant root condition

for β), Hollander also made the link between the words in this set and the different repre-
sentations of 1 in the β-numeration system first studied by Rényi [4]. In this numeration
system, a number α in [0, 1] is represented by the word a1a2 · · · obtained by the following
algorithm. First, set r0 = α. Then, if ri is defined, let ai+1 = ⌊βri⌋ and ri+1 = βri − ai+1.
Hollander showed that the words in MaxlgLU share an arbitrarily long common prefix
with the representation of 1 (up to some modification if it ends with a tail of zeroes).

The final tools introduced by Hollander are the β-polynomials, a set of polynomials (one
canonical and some extended) derived from the representation of 1 in the β-numeration
system, and an operator associated with a polynomial p: if p(x) =

∑d
i=0 cix

i, then

∆p : ZN → ZN, (Un)n∈N 7→

(
d∑

i=0

ciUn+i

)
n∈N

.

In his article, Hollander proves the following theorem:

Theorem 2.1. Let U be a linear recurrence sequence satisfying the dominant root condition
for β > 1 and dβ(1) be the representation of 1 in the β-numeration system.

• If dβ(1) is neither finite nor eventually periodic, then LU is not regular.

• If dβ(1) is eventually periodic, then LU is regular if and only if U satisfies an extended
β-polynomial.

• If dβ(1) is finite and U satisfies an extended β-polynomial, then LU is regular.

• If dβ(1) is finite and LU is regular, then U satisfies a polynomial of the form (xl −
1)B(x) with B(x) an extended β-polynomial and l the length of dβ(1).

In the framework explored by Hollander, with a dominant root greater than 1, only
one case remains incompletely characterized: the case where dβ(1) is finite of length l
and U satisfies some B(x)(xl − 1) but no extended β-polynomial. In this case, the initial
conditions of the sequence U play a role, in addition to the characteristic polynomial of
the recurrence relation satisfied by U .
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3 New developments

In 2022, we have worked to understand the latter case. Our main tool was to study the
precise link between the values of ∆b(U) (where b(x) is the canonical β-polynomial) and
the remainders seen when applying the greedy algorithm to decompose Un − k. One can
prove that, under suitable hypotheses, the remainder after l steps (with l the length of
dβ(1)) when performing the greedy algorithm on Un − k is ∆b(U)n−l + k if this quantity is
nonnegative, and Un−l − k −∆b(U)n−l otherwise.

This allows us to prove the following theorem:

Theorem 3.1. Let U be a linear recurrence sequence with dominant root β > 1 and dβ(1) =
d1 · · · dl. Suppose that U satisfies the polynomial xn(xkl − 1)b(x) with b the canonical β-
polynomial, n ∈ N and k ∈ N0. Then the sequence ∆b(U) is eventually periodic with period
kl. Call this period (δ0, . . . , δkl−1). Then LU is regular if, and only if,

∀j ∈ {0, . . . , l − 1},
k−1∑
i=0

δj+il ≥ 0.

This criterion allows us to reprove the third bullet point in the statement of Hollander’s
theorem, but also fills in the "blank" between the third and fourth points in that statement.
The techniques used also give perspective on the difference between the cases where dβ(1)
is finite or eventually periodic.

We obtain multiple corollaries of this criterion. First, with the hypotheses and notation
of Hollander, we prove that a sequence satisfying (1+ x+ . . .+ xl−1)B(x) is regular if and
only if it also satisfies B(x). Second, we have a better understanding of which initial
conditions give rise to a regular language LU , for a given polynomial. We prove that, if U
satisfies the polynomial P (x)B(x), with x− 1 dividing P and P dividing xl − 1, then the
degP last initial conditions must be chosen inside an intersection of closed half-spaces in
order for LU to be regular, those half-spaces can be computed effectively and they all pass
through a common point.
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