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It has been observed in several contexts that certain substitutive sequences defined using
substitutions of non-constant length could in fact also be obtained from substitutions of constant
length. While it is easy to construct such examples artificially, they also occur naturally, and
the corresponding constant-length substitution is often by no means obvious. Such discoveries of
’hidden automatic sequences’ (a name we borrow from [2]) are often insightful since automatic
sequences are considerably better understood and can be treated using more specialized tools
(e.g. finite automata). A particularly striking example is the Lysénok morphism related to the
presentation of the first Grigorchuk group [7], where spectral properties of the system generated
by the Lysénok morphism are used to deduce spectral properties of the Schreier graph of the
Grigorchuk group. In the opposite direction, a problem of showing that a given substitutive
sequence is not automatic has also appeared in several contexts, e.g. in the study of gaps between
factors in the famous Thue-Morse sequence [9] or in the mathematical description of the drawing
of the classical Indian kolam [I]. In each case, some ad hoc methods are employed to prove or
disprove the automaticity of the substitutive sequence under consideration.

The problem of how to recognize that a substitutive sequence is automatic has been raised
recently in [2] by Allouche, Dekking and Queffélec; however, it also appeared in the classical
book on automatic sequences by Allouche and Shallit [3, Section 7.11, Problem 3| and has been
studied much earlier by Dekking [5].

Problem A. For a given substitutive sequence, decide whether it is automatic.

Let k > 2. A sequence is purely substitutive (resp. purely k-automatic) if it is a fixed point of
some substitution (resp. substitution of constant length k). A sequence is substitutive (resp. k-
automatic) if it can be obtained as the image of a purely substitutive (resp. purely k-automatic)
sequence under a coding. We recall that for a substitution ¢: & — &/*, its incidence matriz is
defined as M, = (|¢(b)|a)ap, Where |©(b)|, denotes the number of occurrences of the letter a in
©(b). A substitution ¢ is called primitive if its incidence matrix M, is primitive.

A necessary condition for a substitutive sequence to be automatic comes from a version
of Cobham’s theorem for substitutions proven by Durand [6]: it implies that a substitutive
sequence, which is not ultimately periodic, can be k-automatic only if the dominant eigenvalue
of the incidence matrix of the underlying substitution is multiplicatively dependent with kﬂ It
is well-known, however, that this condition is not necessary: there are primitive substitutions
whose dominant eigenvalue is an integer and whose nonperiodic fixed points are not automatic.
In the opposite direction, a useful sufficient condition for a fixed point of a substitution to be
automatic has been obtained by Dekking in 1976. Tt says that if the length vector !(|o(a)|)ac.
is a left eigenvector of M, then any fixed point of ¢ is automatic [5], see also [2]. A recent
paper by Allouche, Shallit and Yassawi [4] provides a handy toolkit of methods of showing
that a (substitutive) sequence is not automatic; nevertheless, no general necessary and sufficient
condition is known.

In this talk we will give a solution to Problem [A]for uniformly recurrent substitutive sequences.
Recall that for a letter a € o and a sequence z, a word w € Z(x) is called a return word to
a (in z) if w starts with a, w has exactly one occurrence of a, and wa € £ (z). For a purely
substitutive sequence x given by ¢, we let R, denote the set of return words to a in x, and we let
7: Ry — R} denote the return substitution of ¢ to a (we do not define it formally here, but the
reader will get the idea by looking at Example below). Theorem [B|shows that for a uniformly

1Two real numbers «, B > 1 are called multiplicatively dependent if o™ = ™ for some integers m,n > 1.
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recurrent substitutive sequence x, Dekking’s criterion applied to the return substitution of an
underlying purely substitutive sequence essentially gives a necessary and sufficient condition for
x to be automatic.

Theorem B. Let ¢: of — &/* be a primitive substitution, let w: of — B be a coding, let x be a
fized point of v, and let a = xo. Let y = w(x) and assume that y is not periodic. Let 7: Ry — R},
be the return substitution to a, let M, denote the incidence matriz of T, and let s denote the size
of the largest Jordan block of M, corresponding to the eigenvalue 0. The following conditions
are equivalent:

(i) y is automatic;

(1) t(|¢*(w)|)wer, is a left eigenvector of M.

Example C. Let ¢: o/ — /" be a primitive substitution given by
a — aca, b+— bca,c — cbeac,

and let x = acac... be a fixed point of ¢ starting with a. The set of return words to a in x
is given by R, = {ac,acbc}. To see this, note that ac is the first return word to a occurring in
x. The word ¢(ac) = aclacbe|ac is a concatenation of 3 return words to a in which acbe is the
only new word. Applying ¢ to it, we see that ¢(acbc) = acl|acbc|acbe|ache|ac is a concatenation
of 5 return words and no new return words appear in this factorisation. Hence R, consists
exactly of these two words. Relabelling, 1 = ac, 2 = acbe, we get that the return substitution
7:{1,2} — {1,2}* is given by
1121, 2 — 12221.

It is easy to check that the fixed point z of ¢ is not periodic. The incidence matrix of the

return substitution 7: {1,2} — {1,2}* is given by

2 2
MT:<1 3)’

and has eigenvalues 4 and 1; in particular, s=0. Since ‘(|w|)wer, = (2,4) is a left eigenvector of
M corresponding to the eigenvalue 4, by Theorem [B] the fixed point x of ¢ is automatic.

Time permitting, we will also discus the progress made on Problem [A]in the case of general
substitutive sequences. The talk is based on a joint work with Clemens Miillner [g].
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