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It has been observed in several contexts that certain substitutive sequences de�ned using
substitutions of non-constant length could in fact also be obtained from substitutions of constant
length. While it is easy to construct such examples arti�cially, they also occur naturally, and
the corresponding constant-length substitution is often by no means obvious. Such discoveries of
'hidden automatic sequences' (a name we borrow from [2]) are often insightful since automatic
sequences are considerably better understood and can be treated using more specialized tools
(e.g. �nite automata). A particularly striking example is the Lysënok morphism related to the
presentation of the �rst Grigorchuk group [7], where spectral properties of the system generated
by the Lysënok morphism are used to deduce spectral properties of the Schreier graph of the
Grigorchuk group. In the opposite direction, a problem of showing that a given substitutive
sequence is not automatic has also appeared in several contexts, e.g. in the study of gaps between
factors in the famous Thue�Morse sequence [9] or in the mathematical description of the drawing
of the classical Indian kolam [1]. In each case, some ad hoc methods are employed to prove or
disprove the automaticity of the substitutive sequence under consideration.

The problem of how to recognize that a substitutive sequence is automatic has been raised
recently in [2] by Allouche, Dekking and Que�élec; however, it also appeared in the classical
book on automatic sequences by Allouche and Shallit [3, Section 7.11, Problem 3] and has been
studied much earlier by Dekking [5].

Problem A. For a given substitutive sequence, decide whether it is automatic.

Let k ⩾ 2. A sequence is purely substitutive (resp. purely k-automatic) if it is a �xed point of
some substitution (resp. substitution of constant length k). A sequence is substitutive (resp. k-
automatic) if it can be obtained as the image of a purely substitutive (resp. purely k-automatic)
sequence under a coding. We recall that for a substitution φ : A → A ∗, its incidence matrix is
de�ned as Mφ = (|φ(b)|a)a,b, where |φ(b)|a denotes the number of occurrences of the letter a in
φ(b). A substitution φ is called primitive if its incidence matrix Mφ is primitive.

A necessary condition for a substitutive sequence to be automatic comes from a version
of Cobham's theorem for substitutions proven by Durand [6]: it implies that a substitutive
sequence, which is not ultimately periodic, can be k-automatic only if the dominant eigenvalue
of the incidence matrix of the underlying substitution is multiplicatively dependent with k.1 It
is well-known, however, that this condition is not necessary: there are primitive substitutions
whose dominant eigenvalue is an integer and whose nonperiodic �xed points are not automatic.
In the opposite direction, a useful su�cient condition for a �xed point of a substitution to be
automatic has been obtained by Dekking in 1976. It says that if the length vector t(|φ(a)|)a∈A

is a left eigenvector of Mφ, then any �xed point of φ is automatic [5], see also [2]. A recent
paper by Allouche, Shallit and Yassawi [4] provides a handy toolkit of methods of showing
that a (substitutive) sequence is not automatic; nevertheless, no general necessary and su�cient
condition is known.

In this talk we will give a solution to Problem A for uniformly recurrent substitutive sequences.
Recall that for a letter a ∈ A and a sequence x, a word w ∈ L (x) is called a return word to
a (in x) if w starts with a, w has exactly one occurrence of a, and wa ∈ L (x). For a purely
substitutive sequence x given by φ, we let Ra denote the set of return words to a in x, and we let
τ : Ra → R∗

a denote the return substitution of φ to a (we do not de�ne it formally here, but the
reader will get the idea by looking at Example C below). Theorem B shows that for a uniformly

1Two real numbers α, β > 1 are called multiplicatively dependent if αn = βm for some integers m,n ⩾ 1.
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recurrent substitutive sequence x, Dekking's criterion applied to the return substitution of an
underlying purely substitutive sequence essentially gives a necessary and su�cient condition for
x to be automatic.

Theorem B. Let φ : A → A ∗ be a primitive substitution, let π : A → B be a coding, let x be a

�xed point of φ, and let a = x0. Let y = π(x) and assume that y is not periodic. Let τ : Ra → R∗
a

be the return substitution to a, let Mτ denote the incidence matrix of τ , and let s denote the size

of the largest Jordan block of Mτ corresponding to the eigenvalue 0. The following conditions

are equivalent:

(i) y is automatic;

(ii) t(|φs(w)|)w∈Ra is a left eigenvector of Mτ .

Example C. Let φ : A → A ∗ be a primitive substitution given by

a 7→ aca, b 7→ bca, c 7→ cbcac,

and let x = acac . . . be a �xed point of φ starting with a. The set of return words to a in x
is given by Ra = {ac, acbc}. To see this, note that ac is the �rst return word to a occurring in
x. The word φ(ac) = ac|acbc|ac is a concatenation of 3 return words to a in which acbc is the
only new word. Applying φ to it, we see that φ(acbc) = ac|acbc|acbc|acbc|ac is a concatenation
of 5 return words and no new return words appear in this factorisation. Hence Ra consists
exactly of these two words. Relabelling, 1 = ac, 2 = acbc, we get that the return substitution
τ : {1, 2} → {1, 2}∗ is given by

1 7→ 121, 2 7→ 12221.

It is easy to check that the �xed point x of φ is not periodic. The incidence matrix of the
return substitution τ : {1, 2} → {1, 2}∗ is given by

Mτ =

(
2 2
1 3

)
,

and has eigenvalues 4 and 1; in particular, s=0. Since t(|w|)w∈Ra = (2, 4) is a left eigenvector of
Mτ corresponding to the eigenvalue 4, by Theorem B, the �xed point x of φ is automatic.

Time permitting, we will also discus the progress made on Problem A in the case of general
substitutive sequences. The talk is based on a joint work with Clemens Müllner [8].
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