UNCOVERING HIDDEN AUTOMATIC SEQUENCES

ELŻBIETA KRAWCZYK

It has been observed in several contexts that certain substitutive sequences defined using substitutions of non-constant length could in fact also be obtained from substitutions of constant length. While it is easy to construct such examples artificially, they also occur naturally, and the corresponding constant-length substitution is often by no means obvious. Such discoveries of 'hidden automatic sequences' (a name we borrow from [2]) are often insightful since automatic sequences are considerably better understood and can be treated using more specialized tools (e.g. finite automata). A particularly striking example is the Lysënok morphism related to the presentation of the first Grigorchuk group [7], where spectral properties of the system generated by the Lysënok morphism are used to deduce spectral properties of the Schreier graph of the Grigorchuk group. In the opposite direction, a problem of showing that a given substitutive sequence is not automatic has also appeared in several contexts, e.g. in the study of gaps between factors in the famous Thue–Morse sequence [9] or in the mathematical description of the drawing of the classical Indian kolam [1]. In each case, some *ad hoc* methods are employed to prove or disprove the automaticity of the substitutive sequence under consideration.

The problem of how to recognize that a substitutive sequence is automatic has been raised recently in [2] by Allouche, Dekking and Queffélec; however, it also appeared in the classical book on automatic sequences by Allouche and Shallit [3, Section 7.11, Problem 3] and has been studied much earlier by Dekking [5].

Problem A. For a given substitutive sequence, decide whether it is automatic.

Let $k \ge 2$. A sequence is purely substitutive (resp. purely k-automatic) if it is a fixed point of some substitution (resp. substitution of constant length k). A sequence is substitutive (resp. k-automatic) if it can be obtained as the image of a purely substitutive (resp. purely k-automatic) sequence under a coding. We recall that for a substitution $\varphi: \mathscr{A} \to \mathscr{A}^*$, its incidence matrix is defined as $M_{\varphi} = (|\varphi(b)|_a)_{a,b}$, where $|\varphi(b)|_a$ denotes the number of occurrences of the letter a in $\varphi(b)$. A substitution φ is called primitive if its incidence matrix M_{φ} is primitive.

A necessary condition for a substitutive sequence to be automatic comes from a version of Cobham's theorem for substitutions proven by Durand [6]: it implies that a substitutive sequence, which is not ultimately periodic, can be k-automatic only if the dominant eigenvalue of the incidence matrix of the underlying substitution is multiplicatively dependent with k.¹ It is well-known, however, that this condition is not necessary: there are primitive substitutions whose dominant eigenvalue is an integer and whose nonperiodic fixed points are not automatic. In the opposite direction, a useful sufficient condition for a fixed point of a substitution to be automatic has been obtained by Dekking in 1976. It says that if the length vector $t(|\varphi(a)|)_{a\in\mathscr{A}}$ is a left eigenvector of M_{φ} , then any fixed point of φ is automatic [5], see also [2]. A recent paper by Allouche, Shallit and Yassawi [4] provides a handy toolkit of methods of showing that a (substitutive) sequence is not automatic; nevertheless, no general necessary and sufficient condition is known.

In this talk we will give a solution to Problem A for uniformly recurrent substitutive sequences. Recall that for a letter $a \in \mathscr{A}$ and a sequence x, a word $w \in \mathscr{L}(x)$ is called a return word to a (in x) if w starts with a, w has exactly one occurrence of a, and $wa \in \mathscr{L}(x)$. For a purely substitutive sequence x given by φ , we let \mathbf{R}_a denote the set of return words to a in x, and we let $\tau \colon \mathbf{R}_a \to \mathbf{R}_a^*$ denote the return substitution of φ to a (we do not define it formally here, but the reader will get the idea by looking at Example C below). Theorem B shows that for a uniformly

¹Two real numbers $\alpha, \beta > 1$ are called *multiplicatively dependent* if $\alpha^n = \beta^m$ for some integers $m, n \ge 1$.

recurrent substitutive sequence x, Dekking's criterion applied to the return substitution of an underlying purely substitutive sequence essentially gives a necessary and sufficient condition for x to be automatic.

Theorem B. Let $\varphi: \mathscr{A} \to \mathscr{A}^*$ be a primitive substitution, let $\pi: \mathscr{A} \to \mathscr{B}$ be a coding, let x be a fixed point of φ , and let $a = x_0$. Let $y = \pi(x)$ and assume that y is not periodic. Let $\tau: \mathbf{R}_a \to \mathbf{R}_a^*$ be the return substitution to a, let M_{τ} denote the incidence matrix of τ , and let s denote the size of the largest Jordan block of M_{τ} corresponding to the eigenvalue 0. The following conditions are equivalent:

- (i) y is automatic;
- (ii) ${}^{t}(|\varphi^{s}(w)|)_{w \in \mathbf{R}_{a}}$ is a left eigenvector of M_{τ} .

Example C. Let $\varphi \colon \mathscr{A} \to \mathscr{A}^*$ be a primitive substitution given by

$$a \mapsto aca, b \mapsto bca, c \mapsto cbcac,$$

and let x = acac... be a fixed point of φ starting with a. The set of return words to a in x is given by $\mathbf{R}_a = \{ac, acbc\}$. To see this, note that ac is the first return word to a occurring in x. The word $\varphi(ac) = ac|acbc|ac$ is a concatenation of 3 return words to a in which acbc is the only new word. Applying φ to it, we see that $\varphi(acbc) = ac|acbc|acbc|ac$ is a concatenation of 5 return words and no new return words appear in this factorisation. Hence \mathbf{R}_a consists exactly of these two words. Relabelling, 1 = ac, 2 = acbc, we get that the return substitution $\tau: \{1, 2\} \to \{1, 2\}^*$ is given by

$$1 \mapsto 121, \ 2 \mapsto 12221$$

It is easy to check that the fixed point x of φ is not periodic. The incidence matrix of the return substitution $\tau: \{1,2\} \to \{1,2\}^*$ is given by

$$M_{\tau} = \begin{pmatrix} 2 & 2\\ 1 & 3 \end{pmatrix},$$

and has eigenvalues 4 and 1; in particular, s=0. Since ${}^t(|w|)_{w\in\mathbb{R}_a} = (2,4)$ is a left eigenvector of M_{τ} corresponding to the eigenvalue 4, by Theorem B, the fixed point x of φ is automatic.

Time permitting, we will also discus the progress made on Problem A in the case of general substitutive sequences. The talk is based on a joint work with Clemens Müllner [8].

References

- Gabrielle Allouche, Jean-Paul Allouche, and Jeffrey Shallit, Kolam indiens, dessins sur le sable aux îles Vanuatu, courbe de Sierpiński et morphismes de monoïde, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 7, 2115-2130.
- Jean-Paul Allouche, Michel Dekking, and Martine Queffélec, Hidden automatic sequences, Comb. Theory 1 (2021), Paper No. 20, 15.
- 3. Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003, Theory, applications, generalizations.
- Jean-Paul Allouche, Jeffrey Shallit, and Reem Yassawi, How to prove that a sequence is not automatic, Expo. Math. 40 (2022), no. 1, 1-22.
- 5. F. Michel Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete **41** (1977/78), no. 3, 221-239.
- 6. Fabien Durand, Cobham's theorem for substitutions, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1799-1814.
- Rostislav Grigorchuk, Daniel Lenz, and Tatiana Nagnibeda, Spectra of Schreier graphs of Grigorchuk's group and Schroedinger operators with aperiodic order, Math. Ann. 370 (2018), no. 3-4, 1607–1637.
- 8. Elźbieta Krawczyk and Clemens Müllner, Automaticity of uniformly recurrent substitutive sequences, (2021), Preprint. arXiv:2111.13134 [math.NT].
- 9. Lukas Spiegelhofer, Gaps in the Thue-Morse Word, J. Aust. Math. Soc. 114 (2023), no. 1, 110-144.

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNI-VERSITY, STANISŁAWA ŁOJASIEWICZA 6, 30-348 KRAKÓW

Email address: ela.krawczyk7@gmail.com