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Let us first briefly recall the much-studied concept of canonical number systems:
Let β be an algebraic integer, and put Dcan = {0,1, . . . ,N(β )−1}. We say that β is
a radix of a CNS if every x ∈ Z[β ] has a unique representation of the form

x =
N

∑
k=0

β
kak, where N ∈ N0, ak ∈ Dcan, aN ̸= 0.

If Dcan is replaced by another finite subset of Z[β ] containing zero, and the con-
dition of existence of unique representations is kept, we get a more general notion
of a number system, sometimes called GNS (generalized number system). For ex-
ample, G. Steidl [5] showed that for every β ∈ Z[i] satisfying |β | ̸= 1, |1−β | ̸= 1,
there is a suitable D ⊂ Z[i] such that every element of Z[i] has a unique representa-
tion. In other words: In Z[i], almost every element β can serve as a radix of a GNS.
Soon afterwards, I. Kátai [3] extended this result to all rings of integers of imaginary
quadratic fields.

Another important generalization of canonical number systems are the so-called
CNS-polynomials, where one aims to represent elements of the factor ring Z[x]/( f ),
with f ∈ Z[x] a not-necessarily irreducible monic polynomial.

Both the CNS-polynomials and the number systems in orders of number fields
are captured by the following concept, which is often the more convenient frame-
work to study them:

Suppose that a regular matrix (radix) L ∈ Zd×d and a finite set of digits 0 ∈ D ⊂
Zd are given. The pair (L,D) is called a GNS in Zd if every z ∈ Zd has a unique
representation of the form

z =
N

∑
k=0

Lkak, where N ∈ N0, ak ∈ D, aN ̸= 0.

The GNS in dimension higher than 1 were probably first studied by A. Vince [6];
some of the main ideas go back to I. Kátai, topological aspects were studied among
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Eötvös Loránd University, Budapest, Hungary, e-mail: attila.kovacs@inf.elte.hu

1
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others by W. Gilbert, and a significant contribution was made by A. Barbé and F.
von Haeseler [1].

Since even determining all GNSs with radix 3 in Z is a notoriously hard and
possibly unsolvable task, the focus is on other questions. For example, given a radix
L ∈ Zd×d , is there at least one digit set D such that (L,D) is a GNS? The answer
depends largely on the spectral radius of L−1: Already Vince showed that there can
be no GNS with radix L if ρ(L−1)≥ 1; on the other hand, L. Germán and A. Kovács
showed that a similar condition is already sufficient:

Theorem ([2]). If L ∈ Zd×d satisfies ρ(L−1)< 1/2, then there always exists a digit
set D such that (L,D) is a GNS in Zd .

In this talk, we study a more refined question then just the mere existence of one
suitable digit set:

Question. Given L ∈ Zd×d , for how many digit sets D is (L,D) a GNS?

For d = 1, this problem was fully solved by D. Matula [4]: For radices −1,0,1,2,
the answer is zero, and for −2, the answer is two; in all other cases there are in-
finitely many good digit sets.

We conjecture that unless detL = ±2 (which was essentially solved by Barbé
and von Haeseler), the existence of one GNS for a given radix already implies the
existence of infinitely many. This is still out of reach, but by a combination of many
ideas we obtained the following main result (which significantly improves the above
theorem of Germán and Kovács):

Theorem. If L ∈Zd×d satisfies ρ(L−1)< 1/2, then there are infinitely many D such
that (L,D) is a GNS in Zd .

One of the crucial parts of the proof is a reduction step which allows to restrict
to operators with irreducible characteristic polynomials. For such operators, the so-
lution is fairly simple unless d = 2 and L has complex eigenvalues – but this case,
which is a slight generalization of number systems in imaginary quadratic fields,
turned out to be very involved. Nevertheless, using a construction which starts from
one GNS and exchanges one particular digit for a congruent one, we obtained the
following missing result which is interesting on its own:

Theorem. Let L ∈ Z2×2 with non-real eigenvalues be given. Consider the family of
all digit sets D ⊂ Z2 such that (L,D) is a GNS.

1. The family is empty if and only if detL = 1 or det(L− I) =±1.
2. The family is nonempty but finite if and only if detL = 2 and det(L− I) ̸=±1.
3. In all other cases, the family is infinite, i.e. there are infinitely many digit sets D

such that (L,D) is a GNS.
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