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In their landmark paper published in 1991 [1], Arnoux and Rauzy proposed a
generalization of Sturmian words to larger alphabets now known as Arnoux–Rauzy
words. This expanded on earlier work of Rauzy [10] in which he defined a numeration
system based on the tribonacci word, analogous to the Zeckendorff numeration;
more generally, Arnoux–Rauzy words are related to Ostrowski numeration systems
(see [2]). Recall that an infinite word on n letters (n ≥ 2) is Arnoux–Rauzy if it
is recurrent and it admits, at every length k, a unique left special factor and a
unique right special factor (not necessarily distinct) having exactly n left and right
extensions respectively. Arnoux and Rauzy showed that, similar to the Sturmian
case, these infinite words admit many different interpretations: they are, at the
same time, abstract continued fraction algorithms defined via S-adic representations;
infinite paths in the tree of standard tuples ; or symbolic encodings of trajectories in
partitions of certain dynamical systems.

A key element in Arnoux and Rauzy’s original work was their description of the
evolution of the Rauzy graphs, certain subgraphs of de Bruijn graphs determined by
the factors of an infinite word. In an Arnoux–Rauzy word, the Rauzy graph at rank
n+1 is obtained from the graph at rank n using either a “fente” or an “éclatement”,
illustrated in Figure 1.
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Figure 1. “Fentes” and “éclatements” described by Arnoux and Rauzy.

A generalization of Arnoux–Rauzy words was proposed in 2015 by Berthé et
al. [3] called dendric words. These are infinite words defined by the tree condition,
which involves the extension graphs: simple undirected graphs constructed using
extensions of factors in the infinite word. An infinite word is said to be dendric
when all of its extension graphs are trees. Take for instance the unique fixed point
d = 0210210100210 · · · of the primitive substitution 0 7→ 0210, 1 7→ 10, 2 7→ 210. It
is a ternary dendric word which is not Arnoux–Rauzy; some of its extension graphs
are depicted in Figure 2.

In addition to Arnoux–Rauzy words, dendric words include codings of regular
interval exchanges [4] and many other examples in-between (like the dendric word d
mentioned above). They agree with Sturmian words in the binary case, and in the
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Figure 2. Some extension graphs of the dendric word d = 0210210100210 · · · .

ternary case, a full S-adic characterization was recently obtained by Gheeraert et
al. [7]; the general case remains broadly misunderstood. Nonetheless, dendric words
possess many remarkable combinatorial and dynamical properties: stability under
taking derived words and some form of rigidity [5]; exact linear growth in factor
complexity [3]; and stability under complete bifix decoding [6].

Dendric words also show remarkable regularity from an algebraic standpoint.
This is embodied by the Return Theorem of Berthé et al. [3]. Recall that, given an
infinite word x ∈ AN and a finite factor u of x, a return word to u in x is a word r
such that ru is a factor of x starting with u and having exactly two occurrences of u.
By a return set of x, we mean the set of all return words to a given finite factor u
of x. Let also Fn be the free group over n letters.

Theorem 1 (Return Theorem). Let x be a uniformly recurrent dendric word over
n letters. Every return set of x is a basis of Fn.

The proof of the Return Theorem is interesting in its own right, and circles back
to Arnoux and Rauzy’s original approach: it relies on the idea that the Rauzy graphs
evolve following a series of “fentes” and “éclatements”, where each “fente” corresponds
to a left special factor which is not right special and each “éclatement” corresponds
to a bispecial factor. The dendric case is a strict generalization of the Arnoux–Rauzy
case because (1) several operations can occur in parallel (i.e. at the same rank) and
(2) the “éclatements” may vary depending on the shapes of the extension graphs; see
Figure 3. Despite these new complications, the “éclatements” occurring in dendric
words still enjoy a desirable property which translates to the Return Theorem: the
converse operations—let us say “écroulements”—can be written as a sequence of
elementary foldings in the sense of Stallings [11].
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Figure 3. Example of parallel “fente” and “éclatement” in the
dendric word d = 0210210100210 · · · .

The aim of this talk is to explore a generalization of dendricity defined in terms
of generalized extension graphs, which we call suffix-connectedness. This condition
still guarantees that the “éclatements” occurring in the Rauzy graphs are reasonably
well-behaved, in the sense that the corresponding “écroulements” are, once again, a
sequence of elementary foldings. Translated in an algebraic language, this gives the
following generalization of the Return Theorem [8].



FORAYS BEYOND DENDRICITY 3

Theorem 2. Let x be a uniformly recurrent suffix-connected word over n letters.
The subgroups of Fn generated by the return sets of x all lie in the same conjugacy
class and their rank is n−m+ 1, where m is the number of connected components
of the extension graph of the empty word.

To illustrate the suffix-connectedness condition, we present a non-dendric suffix-
connected example, the fixed point s = 0302303012223 · · · of the substitution on
4 letters 0 7→ 030, 1 7→ 230, 2 7→ 122, 3 7→ 23. This example features multiple
parallel “éclatements” with shapes impossible to encounter in the dendric case, as
depicted in Figure 4. The descriptions of the corresponding “écroulements” in terms
of elementary foldings are accordingly more complicated.
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Figure 4. “Fentes” and “éclatements” with non-dendric shapes in
the suffix-connected word s = 0302303012223 · · · .

In this example, the return sets offer more variety: their cardinalities oscillate
between different values, and they generate two different (but conjugate) subgroups of
rank 3 in F4. We use this example as an opportunity to present some of the tools and
ideas used to establish suffix-connectedness for fixed points of primitive substitutions,
including an algorithm for computing bispecial factors due to Klouda [9].
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