COUNTING RATIONALS AND DIOPHANTINE APPROXIMATION ON MISSING-DIGIT SETS

SAM CHOW, JOINT WITH DEMI ALLEN, PÉTER VARJÚ AND HAN YU

1. A fractal analogue of Serre's dimension growth conjecture

Recall Serre's dimension growth conjecture, which has since been proved by Salberger, see [3].

Theorem 1.1 (Salberger, 2009). Let $m, d \geq 2$, and let $X \subseteq \mathbb{P}^m$ be an integral projective variety of degree d over Q. Then, for $T \geq 1$ and $\varepsilon > 0$, the number of rational points on X up to height T is $O_{X,\varepsilon}(T^{\dim(X)+\varepsilon}).$

This problem has strongly influenced the theory of rational points, in particular the development of the determinant method, and work on uniform aspects continues.

We consider a fractal analogue proposed in [1]. For compact $K \subset \mathbb{R}$ and for $T \geq 1$, define

 $\mathcal{N}_K(T) = \#\{x \in K : qx \in \mathbb{Z} \text{ for some } q \in \mathbb{Z} \cap [1,T]\}.$

Conjecture 1.2 (Broderick–Fishman–Reich, 2011). Let K be the middle-third Cantor set and $\varepsilon > 0$. Then

$$
\mathcal{N}_K(T) \ll_{\varepsilon} T^{\kappa+\varepsilon},
$$

where $\kappa = \frac{\log 2}{\log 3}$ is the Hausdorff dimension of K.

Heuristic and empirical data supporting this can be found in [4]. The lower bound $\mathcal{N}_K(T)$ \gg T^{κ} log T follows from constructing eventually periodic ternary expansions, whilst the upper bound $\mathcal{N}_K(T) \ll T^{2\kappa}$ follows from the separation of rationals and a regularity property of the Cantor measure. Despite the problem having received significant attention from leading researchers, nothing further is known about this counting function.

For integers $b \geq 3$ and $a \in [0, b-1]$, denote by $K_{b,a}$ the set of $x \in [0,1]$ that can be written without the digit a in base b, and note that $K_{3,1}$ is the middle-third Cantor set. We conjecture that if $K = K_{b,a}$ then $\mathcal{N}_K(T) \ll_{\varepsilon} T^{\kappa + \varepsilon}$, where $\kappa = \frac{\log(b-1)}{\log b}$ $\frac{g(b-1)}{\log b}$ is the Hausdorff dimension of K. The separation of rationals again yields $\mathcal{N}_K(T) \ll T^{2\kappa}$.

Theorem 1.3 (ACVY). Let $K = K_{b,a}$ with $b \geq 5$ or $(b,a) \in \{(4,0), (4,3)\}$. Then there exists $\rho > 0$ such that $\mathcal{N}_K(T) \ll_\rho T^{2\kappa - \rho}$.

2. Applications to diophantine approximation on fractals

2.1. Intrinsic diophantine approximation. In the twilight of his career, Mahler proposed "some suggestions for further research", asking how closely the elements of $K_{3,1}$ can be approximated:

- by rationals;
- by rationals in $K_{3,1}$ (intrinsic approximation).

For compact $K \subset \mathbb{R}$ and for $\alpha > 1$, denote by $W_K(\alpha)$ the set of $x \in \mathbb{R}$ such that

$$
\left|x - \frac{p}{q}\right| < q^{-\alpha}, \qquad \frac{p}{q} \in K
$$

holds for infinitely many $(p, q) \in \mathbb{Z} \times \mathbb{N}$, where $\mathbb{N} = \mathbb{Z}_{>0}$. Put

$$
\mathbf{VWA}_K = \bigcup_{\alpha > 1} W_K(\alpha).
$$

To each $K_{b,a}$, we can associate a natural probability measure.

Conjecture 2.1 (Broderick–Fishman–Reich, 2011). The set VWA_K has measure zero.

It follows from [5] that if $K = K_{3,1}$ and $\alpha > 2$ then $W_K(\alpha)$ has measure zero.

Theorem 2.2 (ACVY). Let $K = K_{b,a}$ with $b \geq 5$ or $(b,a) \in \{(4,0), (4,3)\}$. Then there exists $\rho > 0$ such that $W_K(2-\rho)$ has measure zero.

2.2. The distribution of the irrationality exponent. The *irrationality exponent* of $x \in \mathbb{R}$, denoted $w(x)$, is the supremum of $w \in \mathbb{R}$ such that

$$
\left| x - \frac{p}{q} \right| < q^{-w}
$$

holds for infinitely many $(p, q) \in \mathbb{Z} \times \mathbb{N}$. Define

$$
\mathcal{M}(w) = \{x \in \mathbb{R} : w(x) \ge w\}
$$

and

$$
\mathbf{VWA} = \{x \in \mathbb{R} : w(x) > 2\} = \bigcup_{\alpha > 2} \mathcal{M}(w).
$$

The following conjecture was proposed by Bugeaud and Durand in 2016 in the case of the middlethird Cantor set, generalising a conjecture of Levesley, Salp and Velani, see [2]. We write \dim_{H} for the Hausdorff dimension.

Conjecture 2.3 (Levesley–Salp–Velani, 2007, and Bugeaud–Durand, 2016). Let K be a missingdigit set of Hausdorff dimension κ. Then

(1)
$$
\dim_{\mathcal{H}}(\mathcal{M}(w) \cap K) = \max \left\{ \frac{2}{w} + \kappa - 1, \frac{\kappa}{w} \right\} \qquad (w \ge 2)
$$

and

(2)
$$
\dim_{\mathcal{H}}(\mathbf{VWA} \cap K) = \dim_{\mathcal{H}}(K).
$$

In a notable breakthrough, Yu [6] established (2), as well as (1) for w in some interval containing 2, when $K_{b,a}$ and b is very large.

Theorem 2.4 (ACVY). Let $K = K_{b,a}$ with $b \ge 7$. Then $\rho > 0$ such that (1) holds for $2 \le w \le 2+\rho$. In particular, we have (2).

3. THE FOURIER ℓ^1 DIMENSION

We use Fourier analysis. Let ν be a Borel probability measure on [0, 1], and write

$$
\hat{\nu}(\xi) = \int_0^1 e(-\xi x) \mathrm{d}\nu(x),
$$

where $e(y) = e^{2\pi i y}$. By extending periodically, we can consider Fourier series expansions. Fourier ℓ^t dimensions were introduced in [6] to describe averaged decay rates of the Fourier coefficients of a measure. For $t \geq 1$, the Fourier ℓ^t dimension of ν is

$$
\kappa_t(\nu) = \sup \left\{ s : \sum_{\xi=0}^Q |\hat{\nu}(\xi)|^t \ll Q^{1-s} \right\}.
$$

For missing-digit measures, we have

$$
\frac{\kappa_2(\nu)}{2} \leq \kappa_1(\nu) \leq \kappa_2(\nu) = \dim_{\mathrm{H}}(\nu).
$$

The quantity $\kappa_1(\nu)$ plays an essential role in our work, where ν is the natural probability measure associated to the missing-digit set. For general measures ν , the problem of estimating the Fourier ℓ^1 dimension is intractable. However, the classical product formula for $\hat{\nu}$ enables us to estimate $\kappa_1(\nu)$ to arbitrary precision via induction up the tower of rings $\mathbb{Z}/b^N\mathbb{Z}$.

REFERENCES

- [1] R. Broderick, L. Fishman and A. Reich, Intrinsic approximation on Cantor-like sets, a problem of Mahler, Mosc. J. Comb. Number Theory 1 (2011), 291–300.
- [2] Y. Bugeaud and A. Durand, Metric Diophantine approximation on the middle-third Cantor set, J. Eur. Math. Soc. 18 (2016), 1233–1272.
- [3] W. Castryck, R. Cluckers, P. Dittmann and K. H. Nguyen, The dimension growth conjecture, polynomial in the degree and without logarithmic factors, Algebra & Number Theory 14 (2020), 2261–2294.
- [4] A. Rahm, N. Solomon, T. Trauthwein, B. Weiss, The distribution of rational numbers on Cantor's middle thirds set, Unif. Distrib. Theory 15 (2020), 73–92.
- [5] B. Weiss, Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 949–952.
- [6] H. Yu, Rational points near self-similar sets, arXiv:2101.05910.