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The talk is based on joint work with Jakub Konieczny and El»bieta Krawczyk [1].
In the talk, we study substitutive systems generated by nonprimitive substitutions and show

that transitive subsystems of substitutive systems are substitutive. As an application we obtain a
complete characterisation of the sets of words that can appear as common factors of two automatic
sequences de�ned over multiplicatively independent bases. This generalises the famous theorem of
Cobham.

Let A be a �nite alphabet, let A ∗ be the set of �nite words over A and let A ω be the set of
sequences x = (an)n>0 with values in A . A sequence in A ω is called purely substitutive if it is a
�xed point of some substitution ϕ : A → A ∗, assumed to be growing, meaning that the length of
the words ϕn(a) tends to in�nity for all letters a ∈ A . A sequence in A ω is called substitutive if
it arises from a purely substitutive sequence over some alphabet B after applying a (possibly non-
injective) map π : B → A . We say that a dynamical system X ⊆ A ω is substitutive if it arises as
the orbit closure of a substitutive sequence x, meaning that it contains all sequences whose factors
are also factors of x. If the substitution is of constant length k, we call the system k-automatic.
Substitutive systems were extensively studied in the context of primitive substitutions, necessarily
restricting such studies to minimal systems. In the recent years there has been growing interest in
the study of nonminimal substitutive systems, e.g. with connection to Bratteli diagrams and tiling
spaces. Nevertheless, some basic questions seem not to have been studied in this generality.

Our �rst main result gives the following description of transitive subsystems of substitutive sys-
tems.

Theorem A. Every transitive subsystem of a substitutive system is substitutive. Every transitive
subsystem of a k-automatic system is k-automatic.

In fact, we obtain a much more precise description of substitutive (resp., k-automatic) sequences
generating such subsystems. A simpli�ed version of this result is as follows.

Theorem B. Let x be a purely substitutive sequence produced by a substitution ϕ : A → A ∗, and
let X be the orbit closure of x. There exists a power τ = ϕm of ϕ and a �nite set of words W ⊂ A ∗

such that every transitive subsystem Y ⊂ X can be generated by a sequence y ∈ X that is a su�x
of a biin�nite sequence of the form

· · · τ2(v)τ(v)vabwτ(w)τ2(w) · · · (1)

for some v ∈W , w ∈W \ {ε}, and a, b ∈ A ∪ {ε}.

One of the most fundamental results about automatic sequences is Cobham's theorem, which
states that a sequence is simultaneously automatic with respect to two multiplicatively independent
bases if and only if it is ultimately periodic. This result has sparked a lot of research and has been
generalised to a variety of di�erent settings, including substitutive systems, nonstandard numeration
systems, iterated function systems, regular sequences and Mahler functions. We apply the above
results above to obtain a strengthening of Cobham's theorem. This extends earlier results by
Fagnot [2], which says that if two sequences x and y de�ned with respect to two multiplicatively
independent bases share the same language (that is, the set of their factors), then they are both
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ultimately periodic, and Mol, Rampersad, Shallit, and Stipulanti [3], who give an explicit bound on
the length of a common pre�x of x and y that depends on the number of states in the automata
generating x and y. Denoting by L (z) the language of a sequence z, we obtain the following
characterisation of the set of common factors of x and y.

Theorem C. Let k, l > 2 be multiplicatively independent integers, let A be an alphabet, and let
U ⊂ A ∗. The following conditions are equivalent:

(i) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set
of common factors of x and y;

(ii) the set U is a �nite nonempty union of sets of the form L (ωvuwω), where u, v, w are
(possibly empty) words over A and ωvuwω = · · · vvvuwww · · · .

Note that Cobham's theorem follows immediately from Theorem C. One of the crucial ingredients
in the proof of Theorem C is Theorem A applied to k-automatic systems.
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