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Mikuláš Zindulka (joint work with V. Kala)

Charles University, Prague
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Integer partitions

A partition of n ∈ Z≥0 is a way of writing n as a sum

n = a1 + a2 + · · ·+ aj , ai ∈ Z≥0.

Two sums that differ only in the order of parts are considered the same.
The integer partition function: p(n) is the number of partitions of n.

Asymptotics: Hardy and Ramanujan (1918)

p(n) ∼ 1
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Partition identities, congruence properties, parity, . . .

Mikuláš Zindulka Partitions into powes 2 / 19



Integer partitions

A partition of n ∈ Z≥0 is a way of writing n as a sum

n = a1 + a2 + · · ·+ aj , ai ∈ Z≥0.

Two sums that differ only in the order of parts are considered the same.
The integer partition function: p(n) is the number of partitions of n.

Asymptotics: Hardy and Ramanujan (1918)

p(n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)

Partition identities, congruence properties, parity, . . .
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Partitions into powers (m-ary partitions)

Let m ∈ Z, m ≥ 2. An m-ary partition of n is an expression of the form

n = ajm
j + aj−1m

j−1 + · · ·+ a1m + a0, ai ∈ Z≥0.

Let bm(n) denote the m-ary partition function.

Mikuláš Zindulka Partitions into powes 3 / 19



Partitons into powes (m-ary partitions)

Asymptotics: Mahler (1940)

log bm(n) ∼
(log n)2

2 logm

Recurrence relations:

bm(nm) = bm(nm + 1) = . . . = bm(nm + (m − 1))

bm(nm) = bm(mn − 1) + bm(n)

Congruence properties: Andrews, Fraenkel, and Sellers (2015)
If n = ajm

j + · · ·+ a1m + a0 is the base m representation of n, so that
ai ∈ {0, 1, . . . ,m − 1}, then

bm(mn) ≡
j∏

i=0

(ai + 1) (mod m).
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Asymptotics for β ∈ R

Mahler’s asymptotics was extended to non-integer β by de Bruijn (1948)
and Pennington (1953).
Let β ∈ R, β > 1. Define Pβ(x) as the number of solutions to

ajβ
j + aj−1β

j−1 + · · ·+ a1β + a0 < x , j , ai ∈ Z≥0.

Then

log(Pβ(x)− Pβ(x − 1)) ∼ logPβ(x) ∼
(log x)2

2 log β
.

Mikuláš Zindulka Partitions into powes 5 / 19



Partitions into powers of β ∈ R

Definition

Let β ∈ R \ {−1, 0, 1}. A partition of α ∈ R into powers of β is an
expression of the form

α = ajβ
j + aj−1β

j−1 + · · ·+ a1β + a0, ai ∈ Z≥0.

Let pβ(α) be the number of partitions of α.

The number of partitions of α can be infinite (e.g. for β = 1/2 or
β = −2).

It can also be zero.

Question 1: For which β does pβ attain only finite values?
Question 2: What can we say about the range of pβ?
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Finiteness of the partition function

Question 1: For which β does pβ attain only finite values?

Sufficient condition: β > 1. This condition is not necessary.
Observe that if β is transcendental, then pβ(α) = 0 or 1 for every α ∈ R.
We focus on the case when β ∈ R is a root of a quadratic polynomial
Ax2 + Bx + C over Z, and we assume

A > 0

the polynomial is irreducible in Z[x ]
in particular, gcd(A,B,C ) = 1

∆ = B2 − 4AC > 0
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Finiteness of the partition function

Observe: If one of the conjugates β, β′ is greater than 1, then pβ(α) < ∞
for every α ∈ R.
If

α = ajβ
j + aj−1β

j−1 + · · ·+ a1β + a0,

let
α′ = aj(β

′)j + aj−1(β
′)j−1 + · · ·+ a1(β

′) + a0.

Partitions of α into powers of β are in one-to-one correspondence with
partitions of α′ into powers of β′, hence pβ(α) = pβ′(α′).
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Finiteness of the partition function

Theorem 1

Let β ∈ R be a root of a quadratic polynomial Ax2 + Bx + C with A > 0
which is irreducible in Z[x ]. Then the following are equivalent.

i For every α ∈ R: pβ(α) < ∞,

ii either 2A+ B ≤ 0, or [2A+ B > 0 and A+ B + C < 0],

iii at least one of the conjugates β and β′ is greater than 1.

Proof:
(ii) ⇔ (iii): easy
(iii) ⇒ (i): done
It remains to prove (i) ⇒ (ii).
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Proof of Theorem 1

We are proving

[2A+ B > 0 but A+ B + C ≥ 0] ⇒ ∃α ∈ R : pβ(α) = ∞

Proof by case distinction.
Case I. B ≥ 0 and C > 0. We get

0 = Aβ2 + Bβ + C ,

which is a non-trivial partition of 0. We also get

−1 = Aβ2 + Bβ + (C − 1).

Conclusion: pβ(α) > 0 if and only if α ∈ Z[β]. For every α ∈ Z[β],
pβ(α) = ∞.
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Proof of Theorem 1

We are proving

[2A+ B > 0 but A+ B + C ≥ 0] ⇒ ∃α ∈ R : pβ(α) = ∞

Case II. B ≥ 0 and C < 0. Let C = −F , F positive, so that β is a root of
Ax2 + Bx − F . We get

F = Aβ2 + Bβ

and A+ B ≥ F . There are infinitely many partitions of Aβ + F :

Aβ + F = Aβ2 + (A+ B)β

= Aβ2 + (A+ B − F )β + Fβ = Aβ3 + (A+ B)β2 + (A+ B − F )β

= . . .

Case III. B < 0 and C < 0. This is similar to II.
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Proof of Theorem 1

We are proving

[2A+ B > 0 but A+ B + C ≥ 0] ⇒ ∃α ∈ R : pβ(α) = ∞

Case IV: B < 0 and C > 0. This is the case when β > 0 and β′ > 0. If
we let B = −E , E positive, then

Eβ = Aβ2 + C ,

and we assume A+ C > E . It is not clear what to rewrite. We need a new
idea for counting partitions.
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Idea for counting partitions

Suppose that α ∈ R is expressed as

α = cjβ
j + cj−1β

j−1 + · · ·+ c1β + c0, ci ∈ Z≥0.

If α has another partition

α = bkβ
k + bk−1β

k−1 + · · ·+ b1β + b0, bi ∈ Z≥0,

then we let Q, R denote the two polynomials

Q(x) = bkx
k + bk−1x

k−1 + · · ·+ b1x + b0,

R(x) = cjx
j + cj−1x

j−1 + · · ·+ c1x + c0.

It follows that the minimal polynomial of β divides Q(x)− R(x). Thus
there exists a polynomial P such that

P(x)(Ax2 + Bx + C ) = Q(x)− R(x).

The coefficient of x i in Q(x)− R(x) is ≥ −ci . Conversely, if we find a
polynomial P such that the coefficients of P(x)(Ax2 +Bx +C ) satisfy this
bound, we can reconstruct a partition of α.
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Finishing the proof of Theorem 1

Back to case IV. Recall that β is a root of Ax2 + Bx + C . We assume

A > 0, B < 0, C > 0, 2A+ B > 0, A+ B + C > 0

and show: There exists c ∈ Z≥1 such that pβ(cβ) = ∞.
We use the preceding idea for counting partitions and prove that there
exist infinitely many polynomials P(x) ∈ Z[x ] such that

P(x)(Ax2 + Bx + C ) = bnx
n + bn−1x

n−1 + · · ·+ b1x + b0

satisfies

bn > 0,

bi ≥ 0 for i ̸= 1,

b1 = −c .
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Range of the partition function

Question 2: What can we say about the range of the partition function?

Terminology.

β is called a quadratic integer if it is a root of a monic irreducible
polynomial x2 + Bx + C over Z
Tr β = β + β′ = −B, Nβ = ββ′ = C

if β > 0 and β′ > 0, then we say that β is totally positive
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Range of the partition function

Theorem 2

If a totally positive quadratic integer β satisfies

Tr β ≤ Nβ < 2Tr β − 4,

then for every n ∈ Z≥0

pβ((Tr β)β
n) = n + 1.

Corollary

In a real quadratic field K = Q(
√
D), there exist infinitely many β such

that pβ attains all non-negative integer values.
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Range of the partition function

Theorem 2

If a totally positive quadratic integer β satisfies

Tr β ≤ Nβ < 2Tr β − 4, (1)

then for every n ∈ Z≥0

pβ((Tr β)β
n) = n + 1. (2)

Remarks.

It is not difficult to show that (Tr β)βn has at least n + 1 partitions.

The hard part is to show that there are no other partitions. For this,
we use the idea for counting partitions from before.

The bounds in Theorem 2 are optimal in the sense that if one of the
inequalities in (1) does not hold, then the conclusion (2) does not
hold.
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Open questions

1 Theorem 1 shows that if β ∈ R is quadratic, then

[∀α ∈ R : pβ(α) < ∞] ⇔ [β > 1 or β′ > 1].

Is it possible to generalize this to higher degrees?

2 Let β be a totally positive quadratic integer. Is it true that for every
n ∈ Z≥0, there exists α ∈ R such that pβ(α) = n? It would be
interesting to know the answer even in specific examples, e.g.
β = 2 +

√
2.

3 Does there exist a quadratic integer β with this property which is not
totally positive?
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Thank you for your attention!
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