Partitions into powers of an algebraic number

Mikuláš Zindulka (joint work with V. Kala)

Charles University, Prague

Liège, 25 May 2023

Integer partitions

A partition of $n \in \mathbb{Z}_{\geq 0}$ is a way of writing n as a sum

$$
n=a_{1}+a_{2}+\cdots+a_{j}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Two sums that differ only in the order of parts are considered the same. The integer partition function: $p(n)$ is the number of partitions of n.

Integer partitions

A partition of $n \in \mathbb{Z}_{\geq 0}$ is a way of writing n as a sum

$$
n=a_{1}+a_{2}+\cdots+a_{j}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Two sums that differ only in the order of parts are considered the same. The integer partition function: $p(n)$ is the number of partitions of n.

Asymptotics: Hardy and Ramanujan (1918)

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

Integer partitions

A partition of $n \in \mathbb{Z}_{\geq 0}$ is a way of writing n as a sum

$$
n=a_{1}+a_{2}+\cdots+a_{j}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Two sums that differ only in the order of parts are considered the same. The integer partition function: $p(n)$ is the number of partitions of n.

Asymptotics: Hardy and Ramanujan (1918)

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right)
$$

Partition identities, congruence properties, parity, ...

Partitions into powers (m-ary partitions)

Let $m \in \mathbb{Z}, m \geq 2$. An m-ary partition of n is an expression of the form

$$
n=a_{j} m^{j}+a_{j-1} m^{j-1}+\cdots+a_{1} m+a_{0}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Let $b_{m}(n)$ denote the m-ary partition function.

Partitons into powes (m-ary partitions)

Asymptotics: Mahler (1940)

$$
\log b_{m}(n) \sim \frac{(\log n)^{2}}{2 \log m}
$$

Partitons into powes (m-ary partitions)

Asymptotics: Mahler (1940)

$$
\log b_{m}(n) \sim \frac{(\log n)^{2}}{2 \log m}
$$

Recurrence relations:

$$
\begin{aligned}
& b_{m}(n m)=b_{m}(n m+1)=\ldots=b_{m}(n m+(m-1)) \\
& b_{m}(n m)=b_{m}(m n-1)+b_{m}(n)
\end{aligned}
$$

Partitons into powes (m-ary partitions)

Asymptotics: Mahler (1940)

$$
\log b_{m}(n) \sim \frac{(\log n)^{2}}{2 \log m}
$$

Recurrence relations:

$$
\begin{aligned}
& b_{m}(n m)=b_{m}(n m+1)=\ldots=b_{m}(n m+(m-1)) \\
& b_{m}(n m)=b_{m}(m n-1)+b_{m}(n)
\end{aligned}
$$

Congruence properties: Andrews, Fraenkel, and Sellers (2015) If $n=a_{j} m^{j}+\cdots+a_{1} m+a_{0}$ is the base m representation of n, so that $a_{i} \in\{0,1, \ldots, m-1\}$, then

$$
b_{m}(m n) \equiv \prod_{i=0}^{j}\left(a_{i}+1\right) \quad(\bmod m)
$$

Asymptotics for $\beta \in \mathbb{R}$

Mahler's asymptotics was extended to non-integer β by de Bruijn (1948) and Pennington (1953).
Let $\beta \in \mathbb{R}, \beta>1$. Define $P_{\beta}(x)$ as the number of solutions to

$$
a_{j} \beta^{j}+a_{j-1} \beta^{j-1}+\cdots+a_{1} \beta+a_{0}<x, \quad j, a_{i} \in \mathbb{Z}_{\geq 0}
$$

Then

$$
\log \left(P_{\beta}(x)-P_{\beta}(x-1)\right) \sim \log P_{\beta}(x) \sim \frac{(\log x)^{2}}{2 \log \beta}
$$

Partitions into powers of $\beta \in \mathbb{R}$

Definition

Let $\beta \in \mathbb{R} \backslash\{-1,0,1\}$. A partition of $\alpha \in \mathbb{R}$ into powers of β is an expression of the form

$$
\alpha=a_{j} \beta^{j}+a_{j-1} \beta^{j-1}+\cdots+a_{1} \beta+a_{0}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Let $p_{\beta}(\alpha)$ be the number of partitions of α.

Partitions into powers of $\beta \in \mathbb{R}$

Definition

Let $\beta \in \mathbb{R} \backslash\{-1,0,1\}$. A partition of $\alpha \in \mathbb{R}$ into powers of β is an expression of the form

$$
\alpha=a_{j} \beta^{j}+a_{j-1} \beta^{j-1}+\cdots+a_{1} \beta+a_{0}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Let $p_{\beta}(\alpha)$ be the number of partitions of α.

- The number of partitions of α can be infinite (e.g. for $\beta=1 / 2$ or $\beta=-2$).
- It can also be zero.

Partitions into powers of $\beta \in \mathbb{R}$

Definition

Let $\beta \in \mathbb{R} \backslash\{-1,0,1\}$. A partition of $\alpha \in \mathbb{R}$ into powers of β is an expression of the form

$$
\alpha=a_{j} \beta^{j}+a_{j-1} \beta^{j-1}+\cdots+a_{1} \beta+a_{0}, \quad a_{i} \in \mathbb{Z}_{\geq 0}
$$

Let $p_{\beta}(\alpha)$ be the number of partitions of α.

- The number of partitions of α can be infinite (e.g. for $\beta=1 / 2$ or $\beta=-2$).
- It can also be zero.

Question 1: For which β does p_{β} attain only finite values?
Question 2: What can we say about the range of p_{β} ?

Finiteness of the partition function

Question 1: For which β does p_{β} attain only finite values?

Sufficient condition: $\beta>1$. This condition is not necessary.
Observe that if β is transcendental, then $p_{\beta}(\alpha)=0$ or 1 for every $\alpha \in \mathbb{R}$. We focus on the case when $\beta \in \mathbb{R}$ is a root of a quadratic polynomial $A x^{2}+B x+C$ over \mathbb{Z}, and we assume

- $A>0$
- the polynomial is irreducible in $\mathbb{Z}[x]$
- in particular, $\operatorname{gcd}(A, B, C)=1$
- $\Delta=B^{2}-4 A C>0$

Finiteness of the partition function

Observe: If one of the conjugates β, β^{\prime} is greater than 1 , then $p_{\beta}(\alpha)<\infty$ for every $\alpha \in \mathbb{R}$.
If

$$
\alpha=a_{j} \beta^{j}+a_{j-1} \beta^{j-1}+\cdots+a_{1} \beta+a_{0}
$$

let

$$
\alpha^{\prime}=a_{j}\left(\beta^{\prime}\right)^{j}+a_{j-1}\left(\beta^{\prime}\right)^{j-1}+\cdots+a_{1}\left(\beta^{\prime}\right)+a_{0} .
$$

Partitions of α into powers of β are in one-to-one correspondence with partitions of α^{\prime} into powers of β^{\prime}, hence $p_{\beta}(\alpha)=p_{\beta^{\prime}}\left(\alpha^{\prime}\right)$.

Finiteness of the partition function

Theorem 1

Let $\beta \in \mathbb{R}$ be a root of a quadratic polynomial $A x^{2}+B x+C$ with $A>0$ which is irreducible in $\mathbb{Z}[x]$. Then the following are equivalent.
(1) For every $\alpha \in \mathbb{R}: p_{\beta}(\alpha)<\infty$,
(1) either $2 A+B \leq 0$, or $[2 A+B>0$ and $A+B+C<0]$,
(1) at least one of the conjugates β and β^{\prime} is greater than 1 .

Proof:
(ii) \Leftrightarrow (iii): easy
(iii) \Rightarrow (i): done

It remains to prove (i) \Rightarrow (ii).

Proof of Theorem 1

We are proving

$$
[2 A+B>0 \text { but } A+B+C \geq 0] \Rightarrow \exists \alpha \in \mathbb{R}: p_{\beta}(\alpha)=\infty
$$

Proof by case distinction.
Case I. $B \geq 0$ and $C>0$. We get

$$
0=A \beta^{2}+B \beta+C
$$

which is a non-trivial partition of 0 . We also get

$$
-1=A \beta^{2}+B \beta+(C-1)
$$

Conclusion: $p_{\beta}(\alpha)>0$ if and only if $\alpha \in \mathbb{Z}[\beta]$. For every $\alpha \in \mathbb{Z}[\beta]$, $p_{\beta}(\alpha)=\infty$.

Proof of Theorem 1

We are proving

$$
[2 A+B>0 \text { but } A+B+C \geq 0] \Rightarrow \exists \alpha \in \mathbb{R}: p_{\beta}(\alpha)=\infty
$$

Case II. $B \geq 0$ and $C<0$. Let $C=-F, F$ positive, so that β is a root of $A x^{2}+B x-F$. We get

$$
F=A \beta^{2}+B \beta
$$

and $A+B \geq F$. There are infinitely many partitions of $A \beta+F$:

$$
\begin{aligned}
& A \beta+F=A \beta^{2}+(A+B) \beta \\
& =A \beta^{2}+(A+B-F) \beta+F \beta=A \beta^{3}+(A+B) \beta^{2}+(A+B-F) \beta \\
& =\ldots
\end{aligned}
$$

Case III. $B<0$ and $C<0$. This is similar to II.

Proof of Theorem 1

We are proving

$$
[2 A+B>0 \text { but } A+B+C \geq 0] \Rightarrow \exists \alpha \in \mathbb{R}: p_{\beta}(\alpha)=\infty
$$

Case IV: $B<0$ and $C>0$. This is the case when $\beta>0$ and $\beta^{\prime}>0$. If we let $B=-E, E$ positive, then

$$
E \beta=A \beta^{2}+C
$$

and we assume $A+C>E$. It is not clear what to rewrite. We need a new idea for counting partitions.

Idea for counting partitions

Suppose that $\alpha \in \mathbb{R}$ is expressed as

$$
\alpha=c_{j} \beta^{j}+c_{j-1} \beta^{j-1}+\cdots+c_{1} \beta+c_{0}, \quad c_{i} \in \mathbb{Z}_{\geq 0}
$$

If α has another partition

$$
\alpha=b_{k} \beta^{k}+b_{k-1} \beta^{k-1}+\cdots+b_{1} \beta+b_{0}, \quad b_{i} \in \mathbb{Z}_{\geq 0}
$$

then we let Q, R denote the two polynomials

$$
\begin{aligned}
& Q(x)=b_{k} x^{k}+b_{k-1} x^{k-1}+\cdots+b_{1} x+b_{0} \\
& R(x)=c_{j} x^{j}+c_{j-1} x^{j-1}+\cdots+c_{1} x+c_{0}
\end{aligned}
$$

It follows that the minimal polynomial of β divides $Q(x)-R(x)$. Thus there exists a polynomial P such that

$$
P(x)\left(A x^{2}+B x+C\right)=Q(x)-R(x)
$$

The coefficient of x^{i} in $Q(x)-R(x)$ is $\geq-c_{i}$. Conversely, if we find a polynomial P such that the coefficients of $P(x)\left(A x^{2}+B x+C\right)$ satisfy this bound, we can reconstruct a partition of α.

Finishing the proof of Theorem 1

Back to case IV. Recall that β is a root of $A x^{2}+B x+C$. We assume

$$
A>0, \quad B<0, \quad C>0, \quad 2 A+B>0, \quad A+B+C>0
$$

and show: There exists $c \in \mathbb{Z}_{\geq 1}$ such that $p_{\beta}(c \beta)=\infty$.
We use the preceding idea for counting partitions and prove that there exist infinitely many polynomials $P(x) \in \mathbb{Z}[x]$ such that

$$
P(x)\left(A x^{2}+B x+C\right)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}
$$

satisfies

- $b_{n}>0$,
- $b_{i} \geq 0$ for $i \neq 1$,
- $b_{1}=-c$.

Range of the partition function

Question 2: What can we say about the range of the partition function?

Terminology.

- β is called a quadratic integer if it is a root of a monic irreducible polynomial $x^{2}+B x+C$ over \mathbb{Z}
- $\operatorname{Tr} \beta=\beta+\beta^{\prime}=-\boldsymbol{B}, \quad \mathrm{N} \beta=\beta \beta^{\prime}=C$
- if $\beta>0$ and $\beta^{\prime}>0$, then we say that β is totally positive

Range of the partition function

Theorem 2

If a totally positive quadratic integer β satisfies

$$
\operatorname{Tr} \beta \leq \mathrm{N} \beta<2 \operatorname{Tr} \beta-4,
$$

then for every $n \in \mathbb{Z}_{\geq 0}$

$$
p_{\beta}\left((\operatorname{Tr} \beta) \beta^{n}\right)=n+1 .
$$

Corollary

In a real quadratic field $K=\mathbb{Q}(\sqrt{D})$, there exist infinitely many β such that p_{β} attains all non-negative integer values.

Range of the partition function

Theorem 2

If a totally positive quadratic integer β satisfies

$$
\begin{equation*}
\operatorname{Tr} \beta \leq \mathrm{N} \beta<2 \operatorname{Tr} \beta-4, \tag{1}
\end{equation*}
$$

then for every $n \in \mathbb{Z}_{\geq 0}$

$$
\begin{equation*}
p_{\beta}\left((\operatorname{Tr} \beta) \beta^{n}\right)=n+1 \tag{2}
\end{equation*}
$$

Remarks.

- It is not difficult to show that $(\operatorname{Tr} \beta) \beta^{n}$ has at least $n+1$ partitions.
- The hard part is to show that there are no other partitions. For this, we use the idea for counting partitions from before.
- The bounds in Theorem 2 are optimal in the sense that if one of the inequalities in (1) does not hold, then the conclusion (2) does not hold.

Open questions

(1) Theorem 1 shows that if $\beta \in \mathbb{R}$ is quadratic, then

$$
\left[\forall \alpha \in \mathbb{R}: p_{\beta}(\alpha)<\infty\right] \Leftrightarrow\left[\beta>1 \text { or } \beta^{\prime}>1\right]
$$

Is it possible to generalize this to higher degrees?
(2) Let β be a totally positive quadratic integer. Is it true that for every $n \in \mathbb{Z}_{\geq 0}$, there exists $\alpha \in \mathbb{R}$ such that $p_{\beta}(\alpha)=n$? It would be interesting to know the answer even in specific examples, e.g. $\beta=2+\sqrt{2}$.
(3) Does there exist a quadratic integer β with this property which is not totally positive?

Thank you for your attention!

