
One-Parameter Deformations of

Bowen-Series Functions Associated To

Cocompact Fuchsian Triangle Groups

Ayşe Yıltekin Karataş

Oregon State University

Numeration Conference, May 2023
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Motivation

• Relationship between the Regular Continued Fraction map T

and the action of SL2(Z) on R.

• The RCF map T is expansive, Markov, transitive and satisfy
Rényi’s condition.

• Gauss measure: T -invariant and equivalent to Lebesgue

• Nakada’s Æ-continued fraction maps TÆ give a one-parameter
deformation of T .
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Motivation

Let ° be a finitely generated discrete subgroup of SL2(R) acting on
R with dense orbits; i.e. finitely generated Fuchsian group of the
first kind.

RCF B-S

SL2(Z) acting on R ° acting on D
T : (0,1)! (0,1) f: S1 !S1

Expansivity, Markov X
Transitive, Rényi’s condition X
Gauss measure X
TÆ Analog ?

Rufus Bowen and Caroline Series, Markov Maps Associated with
Fuchsian Groups, 1979
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Motivation

• Katok and Ugarcovici (2017) studied B-S functions associated
to cocompact torsion-free Fuchsian groups and defined a
multi-parameter deformation family.

• Los (2009) defined Bowen-Series like maps for cocompact
surface groups considering the geometric presentation of the
group.This study excludes triangle groups.
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Main Results

The following is joint work with my Ph.D. advisor, Thomas A.
Schmidt.

• Correction to Bowen & Series (1979).

(Q1) Can we define a family of expansive functions via an
Æ-deformation of f in the case of cocompact Fuchsian triangle
groups.?

(Q2) If so, is there an ergodic invariant measure for each function in
the family?
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The Bowen-Series Fundamental

Domain



Cocompact Fuchsian Triangle Groups

• A cocompact Fuchsian triangle group ° is a group with
signature (0;m1,m2,m3), where mi 2Z+ and 1

m1
+ 1

m2
+ 1

m3
< 1.

Example
(6,6,3) with the presentation

©
A,B |A6 =B6 = (AB)3 = I

™
.

• The elements in °, as Möbius transformations, act on the unit
disc.

• The elements in ° are classified as hyperbolic and elliptic. A
hyperbolic element has two fixed points on S1 and an elliptic
element has a single fixed point on the interior of the unit disc.
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Constructing a Fundamental Domain

A closed region F ΩD is called fundamental domain for ° if it
tesselates D under the action of °.

Figure 1: A fundamental domain F for the triangle group (6,6,3).
6



Constructing a Fundamental Domain

vi

si si-1

Ti

Figure 2: A fundamental domain F for the triangle group (6,6,3)
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Constructing a Fundamental Domain

A fundamental domain F has extension property if for all s 2 S ,

g(s)\
[

T2°
T (F ±)=;,

where g(s) represents the geodesic containing the side s.
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Constructing a Fundamental Domain

We consider the set N =[4
i=1Ni in D, where Ni is defined as

Ni := {g geodesics | vi 2 g and 9T 2 °,T (sj)Ω g for some j}.

vi

si-1

Ti

Figure 3: N for the group of signature (6,6,3).
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Correction to Bowen & Series (1979)

For F to satisfy the extension property, no geodesic of any Ni

meets F ±.

vi

si-1

Ti

Figure 4: N for the group of signature (3,5,6).
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Correction to Bowen & Series (1979)

Theorem (A.Y.K. & Schmidt, 2023)
Suppose that (m1,m2,m3) is the signature of a cocompact
hyperbolic Fuchsian triangle group. If more than one mi is odd,
then no convex fundamental domain for the signature has the
extension property. Otherwise, the Bowen-Series fundamental
domain for this signature does have the extension property.

In what follows, we suppose that the Bowen-Series fundamental
domain for ° satisfies extension property.
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One-Parameter Deformation of

B-S Functions



The Bowen-Series function

The Bowen - Series function f is defined as

f (x) :=Ti (x) on x 2 [ai ,ai+1).

bi ai

ai+1 bi-1

bi+1 ai-1

vi

Ti Ti-1

ai+1ai

Figure 5: The Bowen-Series function f for the group (6,6,3). Graphed

as y = arg(f (x)) for x 2 [0,2º).
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A Function Family

We call Oi = [ai ,bi ) as the overlap interval and define a function
family depending on the parameter Æ as

fÆ(x) :=

8
<

:
f (x), x 2S1 \D

Ti°1(x), x 2D ,

where D = [ai ,Æ) is the differing interval.

bi ai

vi

�
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A Function Family

ai+1biai ai+1biai

Figure 6: Comparison of the plots of f and fÆ
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Back to Questions

(Q1) Can we define a family of expansive functions via an
Æ-deformation of f in the case of cocompact Fuchsian triangle
groups.? Yes

(Q2) If so, is there an ergodic invariant measure for each function in
the family?
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Adler-Flatto’s ‘Folklore Theorem’

Let X be an interval or a circle and P = {Ik } be a finite partition
of X . Let g :X !X satisfy the following:

(1) Piecewise strict monotonicity,

(2) Piecewise smoothness,

(3) g(Ik) is equal to the union of some I`’s.

(4) There exists an integer p such that gp(Ik)=X for all k .

The conditions (1)-(3) implies that g is a Markov map. Condition
(4) is called aperiodicity or transitivity condition.
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Adler-Flatto’s ‘Folklore Theorem’

Let X be an interval or a circle and P = {Ik } be a finite partition of
X . Let g :X !X satisfy

(1) Piecewise strict monotonicity,

(2) Piecewise smoothness,

(3) g(Ik) is equal to the union of some I`’s.

(4) There exists an integer p such that gp(Ik)=X for all k .

Theorem
Assume that (1)-(4) hold and g is eventually expansive. Then g

has an ergodic invariant measure equivalent to Lebesgue measure.
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Partition P for f

Ik

Figure 7: The set E of the end points of the geodesics in N form the

partition intervals {Ik }.
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Markov Property for f

Bowen & Series show that f is a Markov function with respect to
P . To show (3): f (Ik) is equal to the union of some I`’s, it is
enough to show that E is invariant under f .
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Figure 8: The Bowen-Series function f for the triangle group (6,6,3). 19



Partition PÆ for fÆ

For fÆ, we define PÆ using

EÆ =E [ {f kÆ (Æ)}k∏0[ {f kÆ (Ti°1(Æ))}k∏0.
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Figure 9: The plot of fÆ. Gridlines correspond to the points in EÆ. 20



Markov Property for fÆ

EÆ is fÆ°invariant. Thus, fÆ is Markov if EÆ is finite.
Since E is finite, we only need that the orbits {f kÆ (Æ)}k∏0 and
{f kÆ (Ti°1(Æ))}k∏0 are finite.

Theorem (A.Y.K. & Schmidt, 2023)
The function fÆ is Markov if and only if Æ is a hyperbolic fixed
point of °.

Proof
()) If fÆ is Markov, then EÆ is finite, then fÆ-orbit of Æ is finite,
which implies that Æ is fÆ-preperiodic; i.e. there exists m,n∏ 0
such that f mÆ (Æ)= f nÆ (Æ). Hence, Æ is a hyperbolic fixed point.

(() Suppose Æ is a hyperbolic fixed point with infinite fÆ-orbit.
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Markov Property for fÆ

Lemma (A.Y.K. & Schmidt, 2023)

Fix Æ 2O. Suppose that x 2S1 has infinite fÆ-orbit. Then there
are infinitely many values of j such that the f -orbit of x contains
either (1) f jÆ(x), (2) f ± f jÆ(x), or (3) f 2 ± f jÆ(x).

Proof (Cont.):

• By the Pigeonhole Principle, we can assume one of the three
cases occurs for infinitely many values of j .

• One easily shows f -orbit of Æ is finite.

• Since f is a finite-to-one function and the f -orbit of Æ is finite,
there are only finitely many preimages under f or f 2 of this
finite set.

• There are some m 6= n such that f mÆ (Æ)= f nÆ (Æ), and so
fÆ-orbit of Æ is finite.
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Transitivity

Theorem (A.Y.K. & Schmidt, 2023)
Fix Æ 2Oi . Let ni = |Ni |. The function fÆ is surjective if and only
if the following conditions hold:

• ni > 2,

• ni = 2 and ni+2 > 2,

• Æ belongs to the closure of the set of points x 2Oi such that
f ni (x)= f ni°1(Ti°1x).

Moreover, if fÆ is Markov, then fÆ has ergodic invariant measure
equivalent to Lebesgue measure if and only if fÆ is surjective.
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Transitivity
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Figure 10: Plot of the function fÆ for the signature (4, 4, 3). This

function is not transitive; it is not even a surjective function!
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Thank you for your attention!
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