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Motivation



e Relationship between the Regular Continued Fraction map T
and the action of SL»(Z) on R.

e The RCF map T is expansive, Markov, transitive and satisfy
Rényi's condition.
e Gauss measure: T-invariant and equivalent to Lebesgue

e Nakada's a-continued fraction maps T, give a one-parameter
deformation of T.



Let T be a finitely generated discrete subgroup of SLy(R) acting on
R with dense orbits; i.e. finitely generated Fuchsian group of the

first kind.

RCF | BsS
SLy(Z) acting on R I acting on D
T:(0,1)—(0,1) f.st—st
Expansivity, Markov v
Transitive, Rényi's condition v
Gauss measure v

e Analog 7

Rufus Bowen and Caroline Series, Markov Maps Associated with
Fuchsian Groups, 1979



e Katok and Ugarcovici (2017) studied B-S functions associated
to cocompact torsion-free Fuchsian groups and defined a
multi-parameter deformation family.

e Los (2009) defined Bowen-Series like maps for cocompact
surface groups considering the geometric presentation of the
group.This study excludes triangle groups.



Main Results

The following is joint work with my Ph.D. advisor, Thomas A.
Schmidt.

e Correction to Bowen & Series (1979).

(Q1) Can we define a family of expansive functions via an
a-deformation of f in the case of cocompact Fuchsian triangle
groups.”?

(Q2) If so, is there an ergodic invariant measure for each function in
the family?



The Bowen-Series Fundamental
Domain



Cocompact Fuchsian Triangle Groups

e A cocompact Fuchsian triangle group T is a group with
signature (0; my, mp, m3), where m;j € Z* and m% + m% + m% <1.

Example
(6,6,3) with the presentation

{AB|A®°=B%=(AB)*=1}.

e The elements in T, as Mobius transformations, act on the unit
disc.



Cocompact Fuchsian Triangle Groups

e A cocompact Fuchsian triangle group T is a group with
signature (0; my, mp, m3), where m;j € Z* and m% + m% + m% <1.
Example
(6,6,3) with the presentation

{A,B|A°=B°=(AB)*=1}.

e The elements in T, as Mobius transformations, act on the unit
disc.

e The elements in T are classified as hyperbolic and elliptic. A
hyperbolic element has two fixed points on S! and an elliptic
element has a single fixed point on the interior of the unit disc.



Constructing a Fundamental Domain

A closed region & <D is called fundamental domain for T if it
tesselates D under the action of T'.

Figure 1: A fundamental domain & for the triangle group (6,6,3).



Constructing a Fundamental Domain
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Figure 2: A fundamental domain & for the triangle group (6,6,3)



Constructing a Fundamental Domain

A fundamental domain & has extension property if for all s€ S,

gs)n U T(F°) =9,
Ter

where g(s) represents the geodesic containing the side s.



Constructing a Fundamental Domain

We consider the set /\/ = ulelv,- in D, where N; is defined as

N; :={g geodesics |v;eg and AT €T, T(s;) < g for some j}.

\" ./
A

Figure 3: N for the group of signature (6,6,3).



Correction to Bowen & Series (1979)

For & to satisfy the extension property, no geodesic of any N;
meets F°.

Figure 4: N for the group of signature (3,5,6). 10



Correction to Bowen & Series (1979)

Suppose that (m1, my, m3) is the signature of a cocompact
hyperbolic Fuchsian triangle group.

. Otherwise, the Bowen-Series fundamental
domain for this signature does have the extension property.

In what follows, we suppose that the Bowen-Series fundamental
domain for I' satisfies extension property.
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One-Parameter Deformation of
B-S Functions




The Bowen-Series function

The Bowen - Series function f is defined as

f(x):=Ti(x) on x €[aj,aj+1)-

Figure 5: The Bowen-Series function f for the group (6,6,3). Graphed

as y = arg(f(x)) for x € [0,27). "



A Function Family

We call 0; =[aj, b;) as the overlap interval and define a function
family depending on the parameter a as

f(x), xeS\9
) 4= ()
Ti-1(x), xe€2,
where 7 = [a;,a) is the differing interval.

a
by
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A Function Family
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Figure 6: Comparison of the plots of f and 7,
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Back to Questions

(Q1) Can we define a family of expansive functions via an
a-deformation of f in the case of cocompact Fuchsian triangle
groups.? Yes

(Q2) If so, is there an ergodic invariant measure for each function in

the family?
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Adler-Flatto’s ‘Folklore Theorem’

Let X be an interval or a circle and 22 = {/;} be a finite partition
of X. Let g: X — X satisfy the following:

1
2

(1) Piecewise strict monotonicity,

(@)

(3) g(lx) is equal to the union of some /;'s.
(4)

Piecewise smoothness,

4) There exists an integer p such that gp(lk) X for all k.

The conditions (1)-(3) implies that g is a map. Condition
(4) is called aperiodicity or condition.
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Adler-Flatto’s ‘Folklore Theorem’

Let X be an interval or a circle and & = {/} be a finite partition of
X. Let g: X — X satisfy

1) Piecewise strict monotonicity,

(1)

(2) Piecewise smoothness,

(3) g(lx) is equal to the union of some /;'s.

(4) There exists an integer p such that gP(/;) =X for all k.
Theorem

Assume that (1)-(4) hold and g is eventually expansive. Then g
has an ergodic invariant measure equivalent to Lebesgue measure.
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Partition & for f

Ik

Figure 7: The set £ of the end points of the geodesics in N form the
partition intervals {/,}.



Markov Property for f

Bowen & Series show that f is a Markov function with respect to
2. To show (3): f(Ix) is equal to the union of some Iy's, it is
enough to show that E is invariant under f.

/

! /
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Figure 8: The Bowen-Series function f for the triangle group (6,6,3). 19



Partition 22, for f,

For fy, we define &, using

Eo = EU{f(@)bkso ULFE(Ti—1(@)) kso-

/

| /

1 2 3 4 5 6

Figure 9: The plot of f,. Gridlines correspond to the points in E,. 20



Markov Property for 7,

E, is fy—invariant. Thus, .
Since E is finite, we only need that the orbits {fak(a)}kzo and
{(FR(Ti_1(@))}k=0 are finite.

The function fy is Markov if and only if a is a hyperbolic fixed
point of T.

(=) If fy is Markov, then E, is finite, then fy-orbit of a is finite,
which implies that « is fy-preperiodic; i.e. there exists m,n=0
such that f”(a) = f](a). Hence, a is a hyperbolic fixed point.
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Markov Property for 7,

E, is fy—invariant. Thus, .
Since E is finite, we only need that the orbits {fak(a)}kzo and
{(FR(Ti_1(@))}k=0 are finite.

The function fy is Markov if and only if a is a hyperbolic fixed
point of T.

(=) If fy is Markov, then E, is finite, then fy-orbit of a is finite,
which implies that « is fy-preperiodic; i.e. there exists m,n=0
such that f”(a) = f](a). Hence, a is a hyperbolic fixed point.

(<) Suppose a is a hyperbolic fixed point with infinite fy-orbit.
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Markov Property for 7,

Fix @ € 0. Suppose that x € S! has infinite f,-orbit. Then there

are infinitely many values of j such that the f-orbit of x contains
either (1) f2(x), (2) fofl(x), or (3) F2ofl(x).
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Markov Property for 7,

Fix @ € 0. Suppose that x € S! has infinite f,-orbit. Then there

are infinitely many values of j such that the f-orbit of x contains
either (1) f2(x), (2) fofl(x), or (3) F2ofl(x).

e By the Pigeonhole Principle, we can assume one of the three
cases occurs for infinitely many values of ;.
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Markov Property for 7,

Fix @ € 0. Suppose that x € S! has infinite f,-orbit. Then there
are infinitely many values of j such that the f-orbit of x contains
either (1) f(x), (2) fofl(x), or (3) f2ofl(x).

e By the Pigeonhole Principle, we can assume one of the three

cases occurs for infinitely many values of ;.

e One easily shows f-orbit of a is finite.

e Since f is a finite-to-one function and the f-orbit of a is finite,
there are only finitely many preimages under f or 2 of this
finite set.

e There are some m # n such that f)"(a) =] (), and so

fy-orbit of a is finite. -



Transitivity

Fix w € 0;. Let n;=|N;|. The function f, is if and only
if the following conditions hold:

e Nn;> 2,

e n;=2and njp>2,

e «a belongs to the closure of the set of points x € &; such that

£i(x) = Fi=1(Ti_1x).

Moreover, if f is Markov, then 7, has ergodic invariant measure
equivalent to Lebesgue measure if and only if f, is surjective.
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Transitivity

1 2 3 4 5 6

Figure 10: Plot of the function f, for the signature (4, 4, 3). This
function is not transitive; it is not even a surjective function!
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Thank you for your attention!
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