Values of certain binary partition functions represented by sum of three squares

> Maciej Ulas (joint work with Bartosz Sobolewski)

Institute of Mathematics, Jagiellonian University, Kraków, Poland

Numeration 2023

Introduction and motivation

In 1798 Legendre proved that if N is a positive integer and

$$
N=x^{2}+y^{2}+z^{2}
$$

for some $x, y, z \in \mathbb{Z}$, then N is not of the form $4^{k}(8 s+7)$ for $k, s \in \mathbb{N}$. In particular, the natural density of the set of integers which can not be represented by sum of three squares is equal to $1 / 6$.

Introduction and motivation

In 1798 Legendre proved that if N is a positive integer and

$$
N=x^{2}+y^{2}+z^{2}
$$

for some $x, y, z \in \mathbb{Z}$, then N is not of the form $4^{k}(8 s+7)$ for $k, s \in \mathbb{N}$. In particular, the natural density of the set of integers which can not be represented by sum of three squares is equal to $1 / 6$.
This rises an interesting question whether, for a given sequence of integers $\left(u_{n}\right)_{n \in \mathbb{N}}$, there are infinitely many solutions of the Diophantine equation

$$
\begin{equation*}
u_{n}=x^{2}+y^{2}+z^{2} \tag{1}
\end{equation*}
$$

It is clear to characterize the solutions of (1) it is necessary to have a good understanding of the 2-adic behavior, or to be more precise the 2 -adic valuation, of the terms of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.

Especially interesting is the case, when u_{n} has a combinatorial meaning. The equation (1) with $u_{n}=\binom{2 n}{n}$ was investigated by Granville and Zhu. They characterized those $n \in \mathbb{N}$ such that (1) has a solution in x, y, z. The obtained characterization is equivalent with the existence of certain patterns in (unique) binary expansion of n.

Especially interesting is the case, when u_{n} has a combinatorial meaning. The equation (1) with $u_{n}=\binom{2 n}{n}$ was investigated by Granville and Zhu. They characterized those $n \in \mathbb{N}$ such that (1) has a solution in x, y, z. The obtained characterization is equivalent with the existence of certain patterns in (unique) binary expansion of n.
In particular, the set of integers n, for which $\binom{2 n}{n}$ can be represented as a sum of three squares, has asymptotic density $7 / 8$ in the set of all natural number. The cited authors obtained also characterization of those n such that (1) with $u_{n}=n$! has no solutions. A different approach, via automatic sequences, to this problem was presented by Deshouillers and Luca. They showed that if

$$
S=\left\{n: n!\neq x^{2}+y^{2}+z^{2}\right\}
$$

then

$$
S(x)=\#\{n \leq x: n \in S\}=\frac{7}{8} x+O\left(x^{2 / 3}\right)
$$

Especially interesting is the case, when u_{n} has a combinatorial meaning. The equation (1) with $u_{n}=\binom{2 n}{n}$ was investigated by Granville and Zhu. They characterized those $n \in \mathbb{N}$ such that (1) has a solution in x, y, z. The obtained characterization is equivalent with the existence of certain patterns in (unique) binary expansion of n.
In particular, the set of integers n, for which $\binom{2 n}{n}$ can be represented as a sum of three squares, has asymptotic density $7 / 8$ in the set of all natural number. The cited authors obtained also characterization of those n such that (1) with $u_{n}=n$! has no solutions. A different approach, via automatic sequences, to this problem was presented by Deshouillers and Luca. They showed that if

$$
S=\left\{n: n!\neq x^{2}+y^{2}+z^{2}\right\}
$$

then

$$
S(x)=\#\{n \leq x: n \in S\}=\frac{7}{8} x+O\left(x^{2 / 3}\right)
$$

This result was improved by Hajdu and Papp to

$$
S(x)=7 / 8 x+O\left(x^{1 / 2} \log ^{2} x\right)
$$

and recently by Burns to $S(x)=7 / 8 x+O\left(x^{1 / 2}\right)$.

We follow the same line of research and consider the equation (1) with $u_{n}=b(n)$ being binary partition function. More precisely, let $b(n)$ counts the number of partitions of n with parts being powers of two. For example, $b(4)=4$ because

$$
4=2^{2}=2+2=1+1+2=1+1+1+1
$$

are all possible representations of 4 as a sum of powers of two. The sequence $(b(n))_{n \in \mathbb{N}}$ was already introduced by Euler.

We follow the same line of research and consider the equation (1) with $u_{n}=b(n)$ being binary partition function. More precisely, let $b(n)$ counts the number of partitions of n with parts being powers of two. For example, $b(4)=4$ because

$$
4=2^{2}=2+2=1+1+2=1+1+1+1
$$

are all possible representations of 4 as a sum of powers of two. The sequence $(b(n))_{n \in \mathbb{N}}$ was already introduced by Euler.
Recall that the ordinary generating function of the sequence $(b(n))_{n \in \mathbb{N}}$ has the form

$$
B(x)=\prod_{n=0}^{\infty} \frac{1}{1-x^{2^{n}}}=\sum_{n=0}^{\infty} b(n) x^{n}
$$

As a consequence we see that $B(x)$ satisfies the functional equation $(1-x) B(x)=B\left(x^{2}\right)$. Comparing coefficients on both sides we get that the sequence $(b(n))_{n \in \mathbb{N}}$ satisfies the recurrence: $b(0)=b(1)=1$ and

$$
b(2 n)=b(2 n-1)+b(n), \quad b(2 n+1)=b(2 n)
$$

The corresponding series

$$
T(x)=\frac{1}{B(x)}=\prod_{n=0}^{\infty}\left(1-x^{2^{n}}\right)=\sum_{n=0}^{\infty} t_{n} x^{n}
$$

is the ordinary generating function for the famous Prouhet-Thue-Morse sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ (the PTM sequence for short). Recall that $t_{n}=(-1)^{s_{2}(n)}$, where $s_{2}(n)$ is the number of 1 's in the unique expansion of n in base 2. Equivalently, we have $t_{0}=1$ and

$$
t_{2 n}=t_{n}, \quad t_{2 n+1}=-t_{n}, \quad n \geq 0
$$

The corresponding series

$$
T(x)=\frac{1}{B(x)}=\prod_{n=0}^{\infty}\left(1-x^{2^{n}}\right)=\sum_{n=0}^{\infty} t_{n} x^{n}
$$

is the ordinary generating function for the famous Prouhet-Thue-Morse sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ (the PTM sequence for short). Recall that $t_{n}=(-1)^{s_{2}(n)}$, where $s_{2}(n)$ is the number of 1 's in the unique expansion of n in base 2. Equivalently, we have $t_{0}=1$ and

$$
t_{2 n}=t_{n}, \quad t_{2 n+1}=-t_{n}, \quad n \geq 0
$$

Moreover, for $n \geq 2$, the 2-adic valuation of $b(n)$ is equal to

$$
\nu_{2}(b(n))=\frac{1}{2}\left|t_{n}-2 t_{n-1}+t_{n-2}\right| .
$$

In particular, if $n \geq 2$, then $\nu_{2}(b(n)) \in\{1,2\}$ or to be more precise,

$$
\begin{equation*}
b(n) \equiv 0(\bmod 4) \Longleftrightarrow \nu_{2}(n) \equiv 0(\bmod 2) \text { or } \nu_{2}(n-1) \equiv 0(\bmod 2) . \tag{2}
\end{equation*}
$$

For $m \in \mathbb{N}_{+}$we define $b_{m}(n)$ as a convolution of m copies of $b(n)$. More precisely,

$$
b_{m}(n)=\sum_{i_{1}+\ldots+i_{m}=n} b\left(i_{1}\right) \cdots b\left(i_{m}\right)
$$

Note that $b_{1}(n)=b(n)$. The number $b_{m}(n)$ has also a combinatorial interpretation. Indeed, $b_{m}(n)$ is the number of binary partitions of n, where each part has one of m possible colors.

For $m \in \mathbb{N}_{+}$we define $b_{m}(n)$ as a convolution of m copies of $b(n)$. More precisely,

$$
b_{m}(n)=\sum_{i_{1}+\ldots+i_{m}=n} b\left(i_{1}\right) \cdots b\left(i_{m}\right)
$$

Note that $b_{1}(n)=b(n)$. The number $b_{m}(n)$ has also a combinatorial interpretation. Indeed, $b_{m}(n)$ is the number of binary partitions of n, where each part has one of m possible colors.
For $m=2^{k}-1$ we have that $\nu_{2}\left(b_{m}(n)\right) \in\{1,2\}$ for $n \geq 2^{k}$.

Theorem 1

Let $k \in \mathbb{N}_{+}$. For $n, i \in \mathbb{N}$ such that $i<2^{k+2}$ we have

$$
\nu_{2}\left(b_{2^{k}-1}\left(2^{k+2} n+i\right)\right)= \begin{cases}\nu_{2}(b(8 n)) & \text { if } 0 \leq i<2^{k} \\ 1 & \text { if } 2^{k} \leq i<2^{k+1} \\ 2 & \text { if } 2^{k+1} \leq i<3 \cdot 2^{k} \\ 1 & \text { if } 3 \cdot 2^{k+1} \leq i<2^{k+2}\end{cases}
$$

In particular, $\nu_{2}\left(b_{2^{k}-1}(n)\right) \in\{0,1,2\}$ and $\nu_{2}\left(b_{2^{k}-1}(n)\right)=0$ if and only if $n<2^{k}$.

Let

$$
S_{m}:=\left\{n \in \mathbb{N}: b_{m}(n) \neq x^{2}+y^{2}+z^{2}\right\} .
$$

The case $m=1$

Let

$$
S_{m}:=\left\{n \in \mathbb{N}: b_{m}(n) \neq x^{2}+y^{2}+z^{2}\right\} .
$$

We start with the characterization of the set S_{1}.

Let

$$
S_{m}:=\left\{n \in \mathbb{N}: b_{m}(n) \neq x^{2}+y^{2}+z^{2}\right\}
$$

We start with the characterization of the set S_{1}.
From Gauss-Legendre's theorem and 2-adic properties of $b(n)$ we need to understand the behaviour of the sequence $b(n)(\bmod 32)$. From the equality $b(2 n+1)=b(2 n)$ it is enough to consider $b(2 n)(\bmod 32)$. We thus put $u(n):=b(2 n)$ and observe that

$$
\begin{equation*}
u(2 n)=u(2 n-1)+u(n), \quad u(2 n+1)=u(2 n-1)+2 u(n) \tag{3}
\end{equation*}
$$

Proposition 2

For all $n>0$ we have

$$
\nu_{2}(u(n))= \begin{cases}1 & \text { if } \nu_{2}(n) \equiv 0(\bmod 2) \\ 2 & \text { if } \nu_{2}(n) \equiv 1(\bmod 2)\end{cases}
$$

Proposition 2

For all $n>0$ we have

$$
\nu_{2}(u(n))= \begin{cases}1 & \text { if } \nu_{2}(n) \equiv 0(\bmod 2) \\ 2 & \text { if } \nu_{2}(n) \equiv 1(\bmod 2)\end{cases}
$$

Lemma 3

For each $k, n \in \mathbb{N}$ we have

$$
u\left(2^{2 k+1}(2 n+1)\right) \equiv u(2(2 n+1))(\bmod 32)
$$

Proposition 2

For all $n>0$ we have

$$
\nu_{2}(u(n))= \begin{cases}1 & \text { if } \nu_{2}(n) \equiv 0(\bmod 2) \\ 2 & \text { if } \nu_{2}(n) \equiv 1(\bmod 2)\end{cases}
$$

Lemma 3

For each $k, n \in \mathbb{N}$ we have

$$
u\left(2^{2 k+1}(2 n+1)\right) \equiv u(2(2 n+1))(\bmod 32)
$$

Proof: The Gupta-Rödseth theorem says that

$$
b\left(2^{s+2} n\right) \equiv b\left(2^{s} n\right)\left(\bmod 2^{\mu(s)}\right)
$$

where $\mu(s)=\left\lfloor\frac{3 s+4}{2}\right\rfloor$. Replacing s by $2 k$ and $b\left(2^{s+2} n\right)$ by $u\left(2^{s+1} n\right)$, and noting that $\mu(2 k) \geq 5$ for $k \in \mathbb{N}_{+}$we get the statement of our lemma.

Theorem 4

Let

$$
\begin{aligned}
& j(n)=\frac{u(4 n+2)}{4} \quad \bmod 8 \\
& k(n)=\frac{u(2 n+1)}{2} \quad \bmod 8
\end{aligned}
$$

Then the sequences $(j(n))_{n \in \mathbb{N}}$ and $(k(n))_{n \in \mathbb{N}}$ are 2-automatic. More precisely, for all $n \in \mathbb{N}$ we have

$$
\begin{align*}
j(2 n) & =4-3 t_{n} \tag{4}\\
j(2 n+1) & =4+t_{n} \tag{5}
\end{align*}
$$

and

$$
k(2 n)=4-3 t_{n}, k(2 n+1)=4-t_{n}
$$

where t_{n} is the n term in the PTM sequence.

Theorem 4

Let

$$
\begin{aligned}
& j(n)=\frac{u(4 n+2)}{4} \quad \bmod 8 \\
& k(n)=\frac{u(2 n+1)}{2} \quad \bmod 8
\end{aligned}
$$

Then the sequences $(j(n))_{n \in \mathbb{N}}$ and $(k(n))_{n \in \mathbb{N}}$ are 2-automatic. More precisely, for all $n \in \mathbb{N}$ we have

$$
\begin{align*}
j(2 n) & =4-3 t_{n} \tag{4}\\
j(2 n+1) & =4+t_{n} \tag{5}
\end{align*}
$$

and

$$
k(2 n)=4-3 t_{n}, k(2 n+1)=4-t_{n}
$$

where t_{n} is the n term in the PTM sequence.

Proof: Examine the behaviour of $u(n)(\bmod 32)$.

Theorem 5

For each $a \in\{1,3,5,7\}$ let $\mathbf{c}_{a}=\left(c_{a}(m)\right)_{m \in \mathbb{N}}$ be the increasing sequence such that

$$
\{n \in \mathbb{N}: j(n)=a\}=\left\{c_{a}(m): m \in \mathbb{N}\right\}
$$

Then the sequence \mathbf{c}_{a} is 2-regular. More precisely, we have

$$
\begin{aligned}
& c_{1}(m)=4 m-t_{m}+1, \\
& c_{3}(m)=4 m+t_{m}+2, \\
& c_{5}(m)=4 m-t_{m}+2, \\
& c_{7}(m)=4 m+t_{m}+1 .
\end{aligned}
$$

Theorem 5

For each $a \in\{1,3,5,7\}$ let $\mathbf{c}_{a}=\left(c_{a}(m)\right)_{m \in \mathbb{N}}$ be the increasing sequence such that

$$
\{n \in \mathbb{N}: j(n)=a\}=\left\{c_{a}(m): m \in \mathbb{N}\right\}
$$

Then the sequence \mathbf{c}_{a} is 2-regular. More precisely, we have

$$
\begin{aligned}
& c_{1}(m)=4 m-t_{m}+1, \\
& c_{3}(m)=4 m+t_{m}+2, \\
& c_{5}(m)=4 m-t_{m}+2, \\
& c_{7}(m)=4 m+t_{m}+1 .
\end{aligned}
$$

Corollary 6

The number $b(2 n)$ is not a sum of three squares if and only if

$$
n=2^{2 k-1}\left(8 s+2 t_{s}+3\right)
$$

for some $k, s \in \mathbb{N}_{+}$.

To get required characterization of S_{3}, we need to understand of the behaviour of $b_{3}(16 n+i) \bmod 32$ for $i=0,1,2,3,8,9,10,11$.

The case $m=3$

To get required characterization of S_{3}, we need to understand of the behaviour of $b_{3}(16 n+i) \bmod 32$ for $i=0,1,2,3,8,9,10,11$.

Lemma 7

The following congruences holds:

$$
\begin{aligned}
& b_{3}(8 n+i+4) \equiv 2\left(2 i+1+4(-1)^{n}\right) t_{n}(\bmod 32), \\
& b_{3}(32 n+i) \equiv b_{3}(8 n+i)(\bmod 64), i=0,1,2,3,4 \\
& b_{3}(8(2 n+1)+i) \equiv 4\left(3+3 i-i^{2}-2(-1)^{n+i}\right) t_{n}(\bmod 32) \\
& \equiv \begin{cases}4\left(3-2(-1)^{n}\right) t_{n}(\bmod 32) & \text { if } i=0, \\
4\left(5+2(-1)^{n}\right) t_{n}(\bmod 32) & \text { if } i=1, \\
4\left(5-2(-1)^{n}\right) t_{n}(\bmod 32) & \text { if } i=2, \\
4\left(3+2(-1)^{n}\right) t_{n}(\bmod 32) & \text { if } i=3 .\end{cases}
\end{aligned}
$$

In particular, for each $k \in \mathbb{N}_{+}$and $i \in\{0,1,2,3\}$, we have

$$
\begin{aligned}
b_{3}\left(2^{2 k}(2 n+1)+i\right) & \equiv 2(\bmod 4) \\
b_{3}\left(2^{2 k+1}(2 n+1)+i\right) & \equiv b_{3}(8(2 n+1)+i)(\bmod 32),
\end{aligned}
$$

Theorem 8

We have that $n \in S_{3}$ if and only if

$$
n=2^{2 k+1}\left(8 p+2\left\lfloor\frac{i}{2}\right\rfloor+3+2(-1)^{i} t_{p}\right)+i
$$

for some $i \in\{0,1,2,3\}$ and $k \in \mathbb{N}_{+}, p \in \mathbb{N}$.

Theorem 8

We have that $n \in S_{3}$ if and only if

$$
n=2^{2 k+1}\left(8 p+2\left\lfloor\frac{i}{2}\right\rfloor+3+2(-1)^{i} t_{p}\right)+i
$$

for some $i \in\{0,1,2,3\}$ and $k \in \mathbb{N}_{+}, p \in \mathbb{N}$.

Proof: From the characterization of the 2-adic valuation of $b_{3}(n)$ and Lemma 7 we know that if $n \in S_{3}$, then necessary we have $n(\bmod 16) \in\{0,1,2,3,8,9,10,11\}$. Then we use case by case analysis and get the result.

The case $m=2^{k}-1, k \geq 3$

To analyze the general case we express $\left(b_{2^{k}-1}(n)\right)_{n \in \mathbb{N}}$ as the convolution of $\left(b_{2^{k}}(n)\right)_{n \in \mathbb{N}}$ and the PTM sequence, and use the following lemma.

Lemma 9

For all $k, n \in \mathbb{N}$ we have

$$
b_{2^{k}}(n) \equiv\binom{2^{k}}{n}+2^{k+1}\binom{2^{k}-2}{n-2}\left(\bmod 2^{k+2}\right)
$$

The case $m=2^{k}-1, k \geq 3$

To analyze the general case we express $\left(b_{2^{k}-1}(n)\right)_{n \in \mathbb{N}}$ as the convolution of $\left(b_{2^{k}}(n)\right)_{n \in \mathbb{N}}$ and the PTM sequence, and use the following lemma.

Lemma 9

For all $k, n \in \mathbb{N}$ we have

$$
b_{2^{k}}(n) \equiv\binom{2^{k}}{n}+2^{k+1}\binom{2^{k}-2}{n-2}\left(\bmod 2^{k+2}\right)
$$

We consider two cases. If $n<2^{k}$, we have $\nu_{2}\left(b_{2^{k}-1}(n)\right)=0$. It is thus sufficient for our purposes to describe $b_{2^{k}-1}(n)$ modulo 8 .

Proposition 10

Let $k \geq 3$ and $n<2^{k}$. Then

$$
b_{2^{k}-1}(n) \equiv t_{n} \cdot \begin{cases}1(\bmod 8) & \text { if } 0 \leq n<2^{k-2} \\ 5(\bmod 8) & \text { if } 2^{k-2} \leq n<2^{k-1} \\ 7(\bmod 8) & \text { if } 2^{k-1} \leq n<3 \cdot 2^{k-2} \\ 3(\bmod 8) & \text { if } 3 \cdot 2^{k-2} \leq n<2^{k}\end{cases}
$$

As an immediate corollary, we can describe $n<2^{k}$ such that $b_{2^{k}-1}(n)$ is (not) a sum of three squares.

Corollary 11

Let $k \geq 3$ and $n<2^{k}$. Then $b_{2^{k}-1}(n)$ is not a sum of three squares of integers if and only if one of the following cases holds:

- $0 \leq n<2^{k-2}$ and $t_{n}=-1$;
- $2^{k-1} \leq n<3 \cdot 2^{k-2}$ and $t_{n}=1$.

As an immediate corollary, we can describe $n<2^{k}$ such that $b_{2^{k}-1}(n)$ is (not) a sum of three squares.

Corollary 11

Let $k \geq 3$ and $n<2^{k}$. Then $b_{2^{k}-1}(n)$ is not a sum of three squares of integers if and only if one of the following cases holds:

- $0 \leq n<2^{k-2}$ and $t_{n}=-1$;
- $2^{k-1} \leq n<3 \cdot 2^{k-2}$ and $t_{n}=1$.

We move on to the case $n \geq 2^{k}$. This time we have $\nu_{2}\left(b_{2^{k}-1}(n)\right) \in\{1,2\}$, and by Theorem 1 we need to consider $b_{2^{k}-1}(n)$ modulo 32 .

Lemma 12

(1) For all $k, n \in \mathbb{N}$ such that $n \leq 2^{k}$ we have

$$
\begin{equation*}
\nu_{2}\left(\binom{2^{k}}{n}\right)=k-\nu_{2}(n) \tag{6}
\end{equation*}
$$

(2) For all $m, n \in \mathbb{N}$ we have

$$
\begin{equation*}
\binom{2 m}{2 n} \equiv\binom{m}{n}\left(\bmod 2^{\nu_{2}(m)+1}\right) \tag{7}
\end{equation*}
$$

We are now ready to describe $b_{2^{k}-1}(n)$ modulo 32 for $n \geq 2^{k}$. This time, the characterization involves two terms of the PTM sequence.

Theorem 13

Fix $k, i, j \in \mathbb{N}$ such that $k \geq 3, i<8$, and $j<2^{k-3}$. Then for all $m \geq 1$ we have

$$
b_{2^{k}-1}\left(2^{k} m+2^{k-3} i+j\right) \equiv t_{j}\left(c_{i} t_{m}+d_{i} t_{m-1}\right)(\bmod 32)
$$

where the coefficients c_{i}, d_{i} do not depend on k and are given in Table 1.

i	0	1	2	3	4	5	6	7
c_{i}	1	7	3	5	9	-1	3	5
d_{i}	-5	-3	1	-9	-5	-3	-7	-1

Table: The coefficients c_{i}, d_{i}.

Proof: Consider first the case $k \geq 4$. By Lemma 9 we have

$$
b_{2^{k}-1}(n)=\sum_{l=0}^{n} b_{2^{k}}(I) t_{n-l} \equiv \sum_{l=0}^{n}\binom{2^{k}}{l} t_{n-l}(\bmod 32)
$$

Proof: Consider first the case $k \geq 4$. By Lemma 9 we have

$$
b_{2^{k}-1}(n)=\sum_{l=0}^{n} b_{2^{k}}(I) t_{n-l} \equiv \sum_{l=0}^{n}\binom{2^{k}}{l} t_{n-l}(\bmod 32) .
$$

Now, by (6), the binomial coefficients with $v_{2}(I)<k-4$ vanish modulo 32. Hence, assuming that $n \geq 2^{k}$, the above sum simplifies to

$$
b_{2^{k}-1}(n) \equiv \sum_{l=0}^{16}\binom{2^{k}}{2^{k-4} /} t_{n-2^{k-4} /} \equiv \sum_{l=0}^{16}\binom{16}{l} t_{n-2^{k-4} /}(\bmod 32)
$$

where the second congruence follows from (7).

Proof: Consider first the case $k \geq 4$. By Lemma 9 we have

$$
b_{2^{k}-1}(n)=\sum_{l=0}^{n} b_{2^{k}}(I) t_{n-l} \equiv \sum_{l=0}^{n}\binom{2^{k}}{l} t_{n-l}(\bmod 32) .
$$

Now, by (6), the binomial coefficients with $v_{2}(I)<k-4$ vanish modulo 32. Hence, assuming that $n \geq 2^{k}$, the above sum simplifies to

$$
b_{2^{k}-1}(n) \equiv \sum_{l=0}^{16}\binom{2^{k}}{2^{k-4} /} t_{n-2^{k-4} /} \equiv \sum_{l=0}^{16}\binom{16}{l} t_{n-2^{k-4} /}(\bmod 32)
$$

where the second congruence follows from (7).
Furthermore, we can get rid of the terms with / odd, since there is an even number of them and they are all congruent to 16 modulo 32 . Therefore, we get the congruence

$$
b_{2^{k}-1}(n) \equiv \sum_{l=0}^{8}\binom{16}{2 l} t_{n-2^{k-3} /}(\bmod 32)
$$

In order to simplify the right-hand side, consider $b_{2^{k}-1}$ at $n=2^{k} m+2^{k-3} i+j$, where $m \geq 1,0 \leq i<8$, and $0 \leq j<2^{k-3}$.

By the recurrences defining the PTM sequence, we get

By the recurrences defining the PTM sequence, we get

Hence, the claimed formula holds with the coefficients

$$
c_{i}=\sum_{l=0}^{i}\binom{16}{2 l} t_{i-l}, \quad d_{i}=-\sum_{l=i+1}^{8}\binom{16}{2 l} t_{l-i}
$$

and a direct computation (modulo 32) gives their values as in Table 1.

By the recurrences defining the PTM sequence, we get

Hence, the claimed formula holds with the coefficients

$$
c_{i}=\sum_{l=0}^{i}\binom{16}{2 l} t_{i-l}, \quad d_{i}=-\sum_{l=i+1}^{8}\binom{16}{2 l} t_{l-i}
$$

and a direct computation (modulo 32) gives their values as in Table 1.

Corollary 14

For each $k \geq 3$ and $n \geq 2^{k}$ the term $b_{2^{k}-1}(n)$ is not a sum of three squares of integers if and only if $t_{n}=t_{n-2^{k}}=1$. Equivalently, n is of the form

$$
n=2^{k} m+l
$$

where $I, j \in \mathbb{N}$ are such that $t_{m}=t_{l}, \nu_{2}(m) \equiv 1(\bmod 2)$ and $0 \leq I<2^{k}$.

Counting the solutions

For real $x \geq 0$ and $m \in \mathbb{N}_{+}$let

$$
S_{m}(x)=S_{m} \cap[0, x]=\#\left\{n \leq x: b_{m}(n) \text { is not a sum of three squares }\right\} .
$$

Counting the solutions

For real $x \geq 0$ and $m \in \mathbb{N}_{+}$let

$$
S_{m}(x)=S_{m} \cap[0, x]=\#\left\{n \leq x: b_{m}(n) \text { is not a sum of three squares }\right\}
$$

Using the descriptions of the sets $S_{2^{k}-1}$ obtained in the previous sections for various k it is easy to check that

$$
S_{2^{k}-1}(x)=d_{k} x+O(\log x)
$$

where $d_{1}=d_{2}=1 / 12$ and $d_{k}=1 / 6$ for $k \geq 3$.

Counting the solutions

For real $x \geq 0$ and $m \in \mathbb{N}_{+}$let

$$
S_{m}(x)=S_{m} \cap[0, x]=\#\left\{n \leq x: b_{m}(n) \text { is not a sum of three squares }\right\}
$$

Using the descriptions of the sets $S_{2^{k}-1}$ obtained in the previous sections for various k it is easy to check that

$$
S_{2^{k}-1}(x)=d_{k} x+O(\log x)
$$

where $d_{1}=d_{2}=1 / 12$ and $d_{k}=1 / 6$ for $k \geq 3$.
In the following three results we provide more precise bounds for $S_{2^{k}-1}(x)-d_{k} x$ in the case $k=1, k=2$ and $k \geq 3$, respectively. In particular, each lower and upper bound is of the form $C_{1} \log _{2} x+C_{2}$, where the constant C_{1} is optimal.

Theorem 15

For every $x \geq 1$ we have

$$
-2<S_{1}(x)-\frac{x}{12}<\frac{1}{2} \log _{2} x
$$

In particular, the natural density of the set S_{1} in \mathbb{N} exists and is equal to

$$
\lim _{x \rightarrow+\infty} \frac{S_{1}(x)}{x}=\frac{1}{12}
$$

Moreover, there exists an increasing sequence $\left(m_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{N}$ such that

$$
S_{1}\left(m_{l}\right)-\frac{m_{l}}{12} \sim \frac{1}{2} \log _{2} m_{l}
$$

Proof: For $x \in \mathbb{R}$ define

$$
P(x)=\#\left\{s \in \mathbb{N}: 8 s+2 t_{s}+3 \leq x\right\}, \quad Q(x)=\sum_{k=0} P\left(\frac{x}{4^{k}}\right)
$$

Proof: For $x \in \mathbb{R}$ define

$$
P(x)=\#\left\{s \in \mathbb{N}: 8 s+2 t_{s}+3 \leq x\right\}, \quad Q(x)=\sum_{k=0} P\left(\frac{x}{4^{k}}\right)
$$

We have that that $Q\left(\frac{x}{2}\right)=\#\{n \leq x: b(2 n) \in S\}$, hence by the relation $b(2 n+1)=b(2 n)$, we get

$$
S(x)=Q\left(\frac{x}{4}\right)+Q\left(\frac{x-1}{4}\right) .
$$

For $m \in \mathbb{N}$ and $i=0,1,2,3$ we have the recurrence relations

$$
Q(4 m+i)=Q(m)+P(4 m+i)
$$

Proof: For $x \in \mathbb{R}$ define

$$
P(x)=\#\left\{s \in \mathbb{N}: 8 s+2 t_{s}+3 \leq x\right\}, \quad Q(x)=\sum_{k=0} P\left(\frac{x}{4^{k}}\right)
$$

We have that that $Q\left(\frac{x}{2}\right)=\#\{n \leq x: b(2 n) \in S\}$, hence by the relation $b(2 n+1)=b(2 n)$, we get

$$
S(x)=Q\left(\frac{x}{4}\right)+Q\left(\frac{x-1}{4}\right) .
$$

For $m \in \mathbb{N}$ and $i=0,1,2,3$ we have the recurrence relations

$$
Q(4 m+i)=Q(m)+P(4 m+i)
$$

Also, for $i<8$ we have

$$
P(8 m+i)=m+ \begin{cases}0 & \text { if } i=0 \\ T_{m} & \text { if } i=1,2,3,4 \\ 1 & \text { if } i=5,6,7\end{cases}
$$

Put

$$
R(x)=Q(x)-\frac{x}{6}
$$

By induction on length $L(m)$ of binary expansion of $m \in \mathbb{N}_{+}$we get

$$
\begin{equation*}
-\frac{2}{3} \leq R(m) \leq \frac{1}{4}\left\lfloor\log _{2} m\right\rfloor-\frac{1}{6} \tag{8}
\end{equation*}
$$

Now, define $m_{0}=0$ and $m_{l+1}=16 m_{l}+36$ for $I \in \mathbb{N}$. Using the recurrence relations above and the fact that $4 \mid m_{l}$, we get

$$
R\left(m_{l+1}\right)=R\left(16 m_{l}+36\right)=R\left(4 m_{l}\right)+1-T_{m_{l}}=R\left(m_{l}\right)+1-T_{m_{l}}
$$

By induction one can quickly prove that $T_{m_{l}}=0$ for all $I \in \mathbb{N}$, and thus we get $R\left(m_{l}\right)=I$ and consequently $S_{1}\left(m_{l}\right)-m_{l} / 12=2(I-1)$.

Now, define $m_{0}=0$ and $m_{l+1}=16 m_{l}+36$ for $I \in \mathbb{N}$. Using the recurrence relations above and the fact that $4 \mid m_{l}$, we get

$$
R\left(m_{l+1}\right)=R\left(16 m_{l}+36\right)=R\left(4 m_{l}\right)+1-T_{m_{l}}=R\left(m_{l}\right)+1-T_{m_{l}}
$$

By induction one can quickly prove that $T_{m_{l}}=0$ for all $I \in \mathbb{N}$, and thus we get $R\left(m_{l}\right)=I$ and consequently $S_{1}\left(m_{l}\right)-m_{l} / 12=2(I-1)$.

Theorem 16

For all $x \geq 1$ we have

$$
\left|S_{3}(x)-\frac{x}{12}\right| \leq \frac{1}{6} \log _{2} x+\frac{3}{2}
$$

In particular, the natural density of the set S_{3} in \mathbb{N} exists and is equal to

$$
\lim _{x \rightarrow+\infty} \frac{S_{3}(x)}{x}=\frac{1}{12}
$$

Moreover, there exist increasing sequences $\left(m_{l}\right)_{l \in \mathbb{N}},\left(n_{l}\right)_{l \in \mathbb{N}} \subset \mathbb{N}$ such that

$$
\begin{aligned}
S_{3}\left(m_{l}\right)-\frac{m_{l}}{12} & \sim \frac{1}{6} \log _{2} m_{l} \\
S_{3}\left(n_{l}\right)-\frac{n_{l}}{12} & \sim-\frac{1}{6} \log _{2} n_{l}
\end{aligned}
$$

Theorem 17

If $k \geq 3$, then for all $x \geq 2^{k}$ we have

$$
\left|S_{2^{k}-1}(x)-\frac{x}{6}+2^{k-2}\right| \leq \frac{2^{k-2}}{3}\left(\log _{2} x-k+17\right)
$$

In particular, the natural density of the set $S_{2^{k}-1}$ in \mathbb{N} exists and is equal to

$$
\lim _{x \rightarrow+\infty} \frac{S_{2^{k}-1}(x)}{x}=\frac{1}{6} .
$$

Moreover, there exist increasing sequences $\left(m_{l}\right)_{l \in \mathbb{N}},\left(n_{l}\right)_{l \in \mathbb{N}} \subset \mathbb{N}$ such that

$$
\begin{aligned}
S_{2^{k}-1}\left(m_{l}\right)-\frac{m_{l}}{6} & \sim \frac{2^{k-2}}{3} \log _{2} m_{l} \\
S_{2^{k}-1}\left(n_{l}\right)-\frac{n_{l}}{6} & \sim-\frac{2^{k-2}}{3} \log _{2} n_{l}
\end{aligned}
$$

Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the representation of $b_{m}(n)$ as a sum of three squares for any $m \in \mathbb{N}_{+}$.

Problem 1

Describe the set S_{m} for $m \in \mathbb{N}_{+}$.

Computational results, questions, problems and conjectures

It is natural to ask whether it is possible to obtain results concerning the representation of $b_{m}(n)$ as a sum of three squares for any $m \in \mathbb{N}_{+}$.

Problem 1

Describe the set S_{m} for $m \in \mathbb{N}_{+}$.
The direct approach we, namely reduction modulo a power of 2 , is most likely not applicable in the general case, as it seems that for all $m \neq 2^{k}-1$ the valuations $\nu_{2}\left(b_{m}(n)\right)$ are unbounded. In such a case one would need to compute $b_{m}(n) \bmod 2^{\nu_{2}\left(b_{m}(n)\right)+3}$ and we do not see how this can be done without prior knowledge of $\nu_{2}\left(b_{m}(n)\right)$. Therefore, we expect that obtaining an exact description of S_{m} for even a single value $m \neq 2^{k}-1$ is hard.

We obtained precise characterization of those $n \in \mathbb{N}$ such that $b(n)$ is a sum of three squares. In particular the set of such numbers has asymptotic density equal to $11 / 12$. A more difficult question is whether the set

$$
\mathcal{T}_{1}=\{n \in \mathbb{N}: b(2 n)=\square+\square\}
$$

is infinite or not.

We obtained precise characterization of those $n \in \mathbb{N}$ such that $b(n)$ is a sum of three squares. In particular the set of such numbers has asymptotic density equal to $11 / 12$. A more difficult question is whether the set

$$
\mathcal{T}_{1}=\{n \in \mathbb{N}: b(2 n)=\square+\square\}
$$

is infinite or not.
To get a clue what can be expected, we computed the values of $b(2 n)$ for $n \leq 2^{20}$ and check whether $b(2 n)$ is a sum of two squares. We put

$$
\mathcal{T}_{1}(x)=\#\left(\mathcal{T}_{1} \cap[0, x]\right)
$$

In the table below we present the values of $\mathcal{T}\left(2^{n}\right)$ for $n \leq 20$.

n	1	2	3	4	5	6	7	8	9	10
$\mathcal{T}\left(2^{n}\right)$	2	3	6	8	14	21	37	64	106	174
n	11	12	13	14	15	16	17	18	19	20
$\mathcal{T}\left(2^{n}\right)$	325	617	1089	2018	3699	6804	12551	23624	44606	84176

In the table below we present the values of $\mathcal{T}\left(2^{n}\right)$ for $n \leq 20$.

n	1	2	3	4	5	6	7	8	9	10
$\mathcal{T}\left(2^{n}\right)$	2	3	6	8	14	21	37	64	106	174
n	11	12	13	14	15	16	17	18	19	20
$\mathcal{T}\left(2^{n}\right)$	325	617	1089	2018	3699	6804	12551	23624	44606	84176

Our numerical computations suggest the following

Conjecture 1

The set \mathcal{T} is infinite.

In the table below we present the values of $\mathcal{T}\left(2^{n}\right)$ for $n \leq 20$.

n	1	2	3	4	5	6	7	8	9	10
$\mathcal{T}\left(2^{n}\right)$	2	3	6	8	14	21	37	64	106	174
n	11	12	13	14	15	16	17	18	19	20
$\mathcal{T}\left(2^{n}\right)$	325	617	1089	2018	3699	6804	12551	23624	44606	84176

Our numerical computations suggest the following

Conjecture 1

The set \mathcal{T} is infinite.
The following heuristic reasoning provides further evidence towards our conjecture. More precisely, recall that the counting function of the sums of two squares up to x is $O(x / \sqrt{\log x})$. Thus, one can say that the probability that a random positive integer n can be written as a sum of two squares of integers is $c / \sqrt{\log n}$.

Since, $\log _{2} b(n) \approx \frac{1}{2}\left(\log _{2} n\right)^{2}$ one could conjecture that the expectation that $b(n)$ is a sum of two squares is $c^{\prime} / \log n$ for some $c^{\prime}>0$, provided that $b(n)$ behaves like a random integer of its size. Thus, up to x, we would have at least

$$
\sum_{n \leq x} \frac{1}{\log n}=\frac{x}{\log x}+O\left(x / \log ^{2} x\right)
$$

values of n such that $b(n)$ is a sum of two squares.

Since, $\log _{2} b(n) \approx \frac{1}{2}\left(\log _{2} n\right)^{2}$ one could conjecture that the expectation that $b(n)$ is a sum of two squares is $c^{\prime} / \log n$ for some $c^{\prime}>0$, provided that $b(n)$ behaves like a random integer of its size. Thus, up to x, we would have at least

$$
\sum_{n \leq x} \frac{1}{\log n}=\frac{x}{\log x}+O\left(x / \log ^{2} x\right)
$$

values of n such that $b(n)$ is a sum of two squares.

Conjecture 2

There exists a positive real number c such that

$$
\mathcal{T}(x)=c \frac{x}{\log x}+O\left(x / \log ^{2} x\right)
$$

as $x \rightarrow+\infty$.
Our computations seem to confirm such an expectation. Here are the values $\mathcal{T}\left(2^{m}\right) \frac{m}{2^{m}}$ for $m=10, \ldots, 20$.

m	10	11	12	13	14	15	16	17	18	19	20
$\mathcal{T}\left(2^{m /}\right) \frac{\pi m}{2^{m}}$	1.67	1.74	1.80	1.73	1.72	1.7	1.66	1.63	1.62	1.62	1.61

Thank you for your attention;-)

