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Number �elds and their monogenity
Indecomposable integers

K algebraic number �eld

d degree of K over Q
OK is the ring of algebraic integers in K

De�nition

K is monogenic if OK = Z[γ] for some γ ∈ K, i.e., every algebraic
integer α ∈ OK can be expressed as

α = a0 + a1γ + a2γ
2 + · · ·+ ad−1γ

d−1

where ai ∈ Z for all 0 ≤ i ≤ d− 1.
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Number �elds and their monogenity
Indecomposable integers

Examples

Example

K real quadratic �eld ⇒ K = Q(
√
D) where D > 1 is square-free

OK =

{
Z
[√

D
]

if D ≡ 2, 3 (mod 4),

Z
[
1+

√
D

2

]
if D ≡ 1 (mod 4)

→ They are always monogenic.

Example

K = Q(η) where η is a root of x3 − x2 − 2x− 8 is not monogenic
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Number �elds and their monogenity
Indecomposable integers

The simplest cubic �elds

introduced by Shanks (1974)

K = Q(ρ) where ρ is a root of x3 − ax2 − (a+ 3)x− 1 with
a ∈ Z, a ≥ −1

they are Galois extensions

OK = Z[ρ] for in�nitely many cases of a

Example

OK = Z[ρ] if a2 + 3a+ 9 is square-free

if a = 0, then a2 + 3a+ 9 = 9 is not square-free but still
OK = Z[ρ]
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Monogenic simplest cubic �elds

let c be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic �elds. Then the following are equivalent:

1 The �eld K is monogenic.

2 We have a ∈ {−1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389} or
a2+3a+9

c is a cube.

3 We have a ∈ {−1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389} or

a ̸≡ 3, 21 (mod 27) and vp(a
2 + 3a+ 9) ̸≡ 2 (mod 3) for all

primes p ̸= 3.

If a2+3a+9
c = 1, then OK = Z[ρ].

If a2+3a+9
c ̸= 1 is a cube, then OK = Z[γ] for some γ ̸= ρ.
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let us consider basis of the form Bp(k, l) =
{
1, ρ, k+lρ+ρ2

p

}
where p

is a prime and 1 ≤ k, l ≤ p− 1

Proposition

There exist in�nitely many simplest cubic �elds with the integral
basis Bp(k, l) if and only if p = 3 and (k, l) = (1, 1), or
p ≡ 1 (mod 6) and (k, l) is one of two concrete pairs of (k1, l1) and
(k2, l2) where values of ki and li depend only on p.

p = 3 and p ≡ 1 (mod 6) follows from the solvability of the
equation a2 + 3a+ 9 ≡ 0 (mod p2)

solutions a1 and a2 of a2 + 3a+ 9 ≡ 0 (mod p2) produce
concrete values of (k1, l1) and (k2, l2) for which

ki+liρ+ρ2

p is
an algebraic integer
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Number �elds and their monogenity
Indecomposable integers

K totally real number �eld

O+
K set of totally positive elements α ∈ OK , i.e., all

conjugates of α are positive

De�nition

We say that α ∈ O+
K is indecomposable in OK if it cannot be

written as α = β + γ for any β, γ ∈ O+
K .

only one indecomposable integer in Z, namely 1

they can be used to the study of quadratic forms or the
Pythagoras number in these �elds
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Indecomposable integers

Results on indecomposable integers

We know the precise structure of indecomposable integers in
quadratic �elds Q(

√
D), where they can be described using

the continued fraction of
√
D or

√
D−1
2 (Perron, 1913; Dress,

Scharlau, 1982).

We also know their structure for several families of cubic �elds
(Kala, T., 2023; T., 2023+).

some partial results for biquadratic �elds (�ech, Lachman,
Svoboda, T., Zemková, 2019; Krásenský, T., Zemková, 2020)
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Theorem (Kala, T., 2023)

Let K be the simplest cubic �eld with a ≥ −1 such that

OK = Z[ρ]. The elements 1, 1 + ρ+ ρ2, and

α(v, w) = −v − wρ+ (v + 1)ρ2

where 0 ≤ v ≤ a and v(a+ 2) + 1 ≤ w ≤ (v + 1)(a+ 1) are, up to

multiplication by totally positive units, all the indecomposable

integers in Q(ρ).

We provide analogous results for the simplest cubic �elds with the
basis B3(1, 1) =

{
1, ρ, 1+ρ+ρ2

3

}
.
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Smallest norm

Theorem (Lemmermeyer, Pethö, 1995)

For all α ∈ Z[ρ] either |N(α)| ≥ 2a+ 3, or α is associated to a

rational integer.

Proposition

Let K be a simplest cubic �eld with the basis B3(1, 1). Then for all
α ∈ OK either

|N(α)| ≥
{

a2+3a+9
27 if a = 21, 30, 48,

2a+ 3 if a > 48,

or α is associated with a rational integer.
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Universal quadratic forms

Quadratic form Q(x1, . . . , xn) =
∑

1≤i≤j≤n aijxixj with aij ∈ OK

is

classical if 2|aij for all i ̸= j,

totally positive de�nite if Q(γ1, . . . , γn) ∈ O+
K for all γi ∈ OK

not all zero,

universal over OK if it represents all elements in O+
K

Theorem

Let K be a simplest cubic �elds with basis B3(1, 1).

There exists a diagonal universal quadratic form over OK with
a2+3a

3 + 12a+ 12 variables.

Every classical universal quadratic form over OK has at least
a2+3a
54 variables.
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Pythagoras number

let O be a commutative ring∑
O2 =

{∑n
i=1 α

2
i ; αi ∈ O, n ∈ N

}
∑mO2 =

{∑m
i=1 α

2
i ; αi ∈ O

}
the Pythagoras number of the ring O is

P(O) = inf
{
m ∈ N ∪ {∞};

∑
O2 =

m∑
O2

}

Theorem

Let K be a simplest cubic �elds with basis B3(1, 1). Then the

Pythagoras number of OK is 6.

Note that the Pythagoras number of Z[ρ] is 6 for a ≥ 3 (T.,
2023+).
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Thank you for your attention.
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