Additive structure of non-monogenic simplest cubic fields

Magdaléna Tinková

Czech Technical University in Prague

Joint work with Daniel Gil-Muñoz.

May 23, 2023

- K algebraic number field
- $\bullet \ d$ degree of K over ${\mathbb Q}$
- \mathcal{O}_K is the ring of algebraic integers in K

- K algebraic number field
- d degree of K over \mathbb{Q}
- \mathcal{O}_K is the ring of algebraic integers in K

K is monogenic if $\mathcal{O}_K = \mathbb{Z}[\gamma]$ for some $\gamma \in K$, i.e., every algebraic integer $\alpha \in \mathcal{O}_K$ can be expressed as

$$\alpha = a_0 + a_1\gamma + a_2\gamma^2 + \dots + a_{d-1}\gamma^{d-1}$$

where $a_i \in \mathbb{Z}$ for all $0 \leq i \leq d-1$.

Examples

Example

K real quadratic field $\Rightarrow K = \mathbb{Q}(\sqrt{D})$ where D>1 is square-free

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}\big[\sqrt{D}\big] & \text{ if } D \equiv 2,3 \pmod{4}, \\ \mathbb{Z}\big[\frac{1+\sqrt{D}}{2}\big] & \text{ if } D \equiv 1 \pmod{4} \end{cases}$$

ightarrow They are always monogenic.

< E

Examples

Example

K real quadratic field $\Rightarrow K = \mathbb{Q}(\sqrt{D})$ where D>1 is square-free

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}\big[\sqrt{D}\big] & \text{ if } D \equiv 2,3 \pmod{4}, \\ \mathbb{Z}\big[\frac{1+\sqrt{D}}{2}\big] & \text{ if } D \equiv 1 \pmod{4} \end{cases}$$

ightarrow They are always monogenic.

Example

$$K=\mathbb{Q}(\eta)$$
 where η is a root of x^3-x^2-2x-8 is not monogenic

- ∢ ⊒ →

The simplest cubic fields

- introduced by Shanks (1974)
- $K = \mathbb{Q}(\rho)$ where ρ is a root of $x^3 ax^2 (a+3)x 1$ with $a \in \mathbb{Z}, \ a \geq -1$
- they are Galois extensions
- $\mathcal{O}_K = \mathbb{Z}[\rho]$ for infinitely many cases of a

The simplest cubic fields

- introduced by Shanks (1974)
- $K = \mathbb{Q}(\rho)$ where ρ is a root of $x^3 ax^2 (a+3)x 1$ with $a \in \mathbb{Z}, \ a \geq -1$
- they are Galois extensions
- $\mathcal{O}_K = \mathbb{Z}[\rho]$ for infinitely many cases of a

Example

• $\mathcal{O}_K = \mathbb{Z}[\rho]$ if $a^2 + 3a + 9$ is square-free

The simplest cubic fields

- introduced by Shanks (1974)
- $K = \mathbb{Q}(\rho)$ where ρ is a root of $x^3 ax^2 (a+3)x 1$ with $a \in \mathbb{Z}, \ a \geq -1$
- they are Galois extensions
- $\mathcal{O}_K = \mathbb{Z}[\rho]$ for infinitely many cases of a

Example

- $\mathcal{O}_K = \mathbb{Z}[\rho]$ if $a^2 + 3a + 9$ is square-free
- if a=0, then $a^2+3a+9=9$ is not square-free but still $\mathcal{O}_K=\mathbb{Z}[\rho]$

く 目 トーイ ヨ トーイ ヨ ト

Monogenic simplest cubic fields

let $\mathfrak c$ be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:

- The field K is monogenic.
- 2 We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $\frac{a^2+3a+9}{c}$ is a cube.
- We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $a \not\equiv 3, 21 \pmod{27}$ and $v_p(a^2 + 3a + 9) \not\equiv 2 \pmod{3}$ for all primes $p \neq 3$.

Monogenic simplest cubic fields

let $\mathfrak c$ be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:

- 2 We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $\frac{a^2+3a+9}{c}$ is a cube.
- We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $a \not\equiv 3, 21 \pmod{27}$ and $v_p(a^2 + 3a + 9) \not\equiv 2 \pmod{3}$ for all primes $p \neq 3$.

• If
$$\frac{a^2+3a+9}{\mathfrak{c}}=1$$
, then $\mathcal{O}_K=\mathbb{Z}[
ho]$.

Monogenic simplest cubic fields

let $\mathfrak c$ be the conductor of K

Theorem (Kashio, Sekigawa, 2021)

Let K be a simplest cubic fields. Then the following are equivalent:

- 2 We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $\frac{a^2+3a+9}{c}$ is a cube.
- We have $a \in \{-1, 0, 1, 2, 3, 5, 12, 54, 66, 1259, 2389\}$ or $a \not\equiv 3, 21 \pmod{27}$ and $v_p(a^2 + 3a + 9) \not\equiv 2 \pmod{3}$ for all primes $p \neq 3$.

let us consider basis of the form $B_p(k,l)=\big\{1,\rho,\frac{k+l\rho+\rho^2}{p}\big\}$ where p is a prime and $1\leq k,l\leq p-1$

AP ► < E ►

B b

let us consider basis of the form $B_p(k,l)=\left\{1,\rho,\frac{k+l\rho+\rho^2}{p}\right\}$ where p is a prime and $1\leq k,l\leq p-1$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k,l)$ if and only if p = 3 and (k,l) = (1,1), or $p \equiv 1 \pmod{6}$ and (k,l) is one of two concrete pairs of (k_1, l_1) and (k_2, l_2) where values of k_i and l_i depend only on p.

let us consider basis of the form $B_p(k,l)=\left\{1,\rho,\frac{k+l\rho+\rho^2}{p}\right\}$ where p is a prime and $1\leq k,l\leq p-1$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k,l)$ if and only if p = 3 and (k,l) = (1,1), or $p \equiv 1 \pmod{6}$ and (k,l) is one of two concrete pairs of (k_1, l_1) and (k_2, l_2) where values of k_i and l_i depend only on p.

• p=3 and $p\equiv 1 \pmod{6}$ follows from the solvability of the equation $a^2+3a+9\equiv 0 \pmod{p^2}$

let us consider basis of the form $B_p(k,l)=\big\{1,\rho,\frac{k+l\rho+\rho^2}{p}\big\}$ where p is a prime and $1\leq k,l\leq p-1$

Proposition

There exist infinitely many simplest cubic fields with the integral basis $B_p(k,l)$ if and only if p = 3 and (k,l) = (1,1), or $p \equiv 1 \pmod{6}$ and (k,l) is one of two concrete pairs of (k_1, l_1) and (k_2, l_2) where values of k_i and l_i depend only on p.

- p=3 and $p\equiv 1 \pmod{6}$ follows from the solvability of the equation $a^2+3a+9\equiv 0 \pmod{p^2}$
- solutions a_1 and a_2 of $a^2 + 3a + 9 \equiv 0 \pmod{p^2}$ produce concrete values of (k_1, l_1) and (k_2, l_2) for which $\frac{k_i + l_i \rho + \rho^2}{p}$ is an algebraic integer

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・

- K totally real number field
- \mathcal{O}_K^+ set of totally positive elements $\alpha \in \mathcal{O}_K$, i.e., all conjugates of α are positive

- K totally real number field
- \mathcal{O}_K^+ set of totally positive elements $\alpha \in \mathcal{O}_K$, i.e., all conjugates of α are positive

We say that $\alpha \in \mathcal{O}_K^+$ is indecomposable in \mathcal{O}_K if it cannot be written as $\alpha = \beta + \gamma$ for any $\beta, \gamma \in \mathcal{O}_K^+$.

- K totally real number field
- \mathcal{O}_K^+ set of totally positive elements $\alpha \in \mathcal{O}_K$, i.e., all conjugates of α are positive

We say that $\alpha \in \mathcal{O}_K^+$ is indecomposable in \mathcal{O}_K if it cannot be written as $\alpha = \beta + \gamma$ for any $\beta, \gamma \in \mathcal{O}_K^+$.

ullet only one indecomposable integer in $\mathbb Z$, namely 1

- K totally real number field
- \mathcal{O}_K^+ set of totally positive elements $\alpha \in \mathcal{O}_K$, i.e., all conjugates of α are positive

We say that $\alpha \in \mathcal{O}_K^+$ is indecomposable in \mathcal{O}_K if it cannot be written as $\alpha = \beta + \gamma$ for any $\beta, \gamma \in \mathcal{O}_K^+$.

- ullet only one indecomposable integer in $\mathbb Z$, namely 1
- they can be used to the study of quadratic forms or the Pythagoras number in these fields

Results on indecomposable integers

• We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).

Results on indecomposable integers

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- We also know their structure for several families of cubic fields (Kala, T., 2023; T., 2023+).

Results on indecomposable integers

- We know the precise structure of indecomposable integers in quadratic fields $\mathbb{Q}(\sqrt{D})$, where they can be described using the continued fraction of \sqrt{D} or $\frac{\sqrt{D}-1}{2}$ (Perron, 1913; Dress, Scharlau, 1982).
- We also know their structure for several families of cubic fields (Kala, T., 2023; T., 2023+).
- some partial results for biquadratic fields (Čech, Lachman, Svoboda, T., Zemková, 2019; Krásenský, T., Zemková, 2020)

Theorem (Kala, T., 2023)

Let K be the simplest cubic field with $a \ge -1$ such that $\mathcal{O}_K = \mathbb{Z}[\rho]$. The elements 1, $1 + \rho + \rho^2$, and

$$\alpha(v,w) = -v - w\rho + (v+1)\rho^2$$

where $0 \le v \le a$ and $v(a+2) + 1 \le w \le (v+1)(a+1)$ are, up to multiplication by totally positive units, all the indecomposable integers in $\mathbb{Q}(\rho)$.

Theorem (Kala, T., 2023)

Let K be the simplest cubic field with $a \ge -1$ such that $\mathcal{O}_K = \mathbb{Z}[\rho]$. The elements 1, $1 + \rho + \rho^2$, and

$$\alpha(v,w) = -v - w\rho + (v+1)\rho^2$$

where $0 \le v \le a$ and $v(a+2)+1 \le w \le (v+1)(a+1)$ are, up to multiplication by totally positive units, all the indecomposable integers in $\mathbb{Q}(\rho)$.

We provide analogous results for the simplest cubic fields with the basis $B_3(1,1) = \left\{1, \rho, \frac{1+\rho+\rho^2}{3}\right\}.$

Smallest norm

Theorem (Lemmermeyer, Pethö, 1995)

For all $\alpha \in \mathbb{Z}[\rho]$ either $|N(\alpha)| \ge 2a + 3$, or α is associated to a rational integer.

< E

Smallest norm

Theorem (Lemmermeyer, Pethö, 1995)

For all $\alpha \in \mathbb{Z}[\rho]$ either $|N(\alpha)| \ge 2a + 3$, or α is associated to a rational integer.

Proposition

Let K be a simplest cubic field with the basis $B_3(1,1)$. Then for all $\alpha \in \mathcal{O}_K$ either

$$|N(\alpha)| \ge \begin{cases} \frac{a^2 + 3a + 9}{27} & \text{if } a = 21, 30, 48, \\ 2a + 3 & \text{if } a > 48, \end{cases}$$

or α is associated with a rational integer.

Universal quadratic forms

Quadratic form $Q(x_1,\ldots,x_n) = \sum_{1 \leq i \leq j \leq n} a_{ij} x_i x_j$ with $a_{ij} \in \mathcal{O}_K$ is

- classical if $2|a_{ij}$ for all $i \neq j$,
- totally positive definite if $Q(\gamma_1, \ldots, \gamma_n) \in \mathcal{O}_K^+$ for all $\gamma_i \in \mathcal{O}_K$ not all zero,
- universal over \mathcal{O}_K if it represents all elements in \mathcal{O}_K^+

Universal quadratic forms

Quadratic form $Q(x_1,\ldots,x_n)=\sum_{1\leq i\leq j\leq n}a_{ij}x_ix_j$ with $a_{ij}\in\mathcal{O}_K$ is

- classical if $2|a_{ij}$ for all $i \neq j$,
- totally positive definite if $Q(\gamma_1, \ldots, \gamma_n) \in \mathcal{O}_K^+$ for all $\gamma_i \in \mathcal{O}_K$ not all zero,
- universal over \mathcal{O}_K if it represents all elements in \mathcal{O}_K^+

Theorem

Let K be a simplest cubic fields with basis $B_3(1,1)$.

- There exists a diagonal universal quadratic form over \mathcal{O}_K with $\frac{a^2+3a}{3}+12a+12$ variables.
- Every classical universal quadratic form over \mathcal{O}_K has at least $\frac{a^2+3a}{54}$ variables.

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Pythagoras number

 $\bullet~$ let ${\cal O}~$ be a commutative ring

•
$$\sum \mathcal{O}^2 = \left\{ \sum_{i=1}^n \alpha_i^2; \; \alpha_i \in \mathcal{O}, n \in \mathbb{N} \right\}$$

- $\sum^{m} \mathcal{O}^{2} = \left\{ \sum_{i=1}^{m} \alpha_{i}^{2}; \alpha_{i} \in \mathcal{O} \right\}$
- $\bullet\,$ the Pythagoras number of the ring ${\cal O}$ is

$$\mathcal{P}(\mathcal{O}) = \inf \left\{ m \in \mathbb{N} \cup \{\infty\}; \sum \mathcal{O}^2 = \sum^m \mathcal{O}^2 \right\}$$

Pythagoras number

• let \mathcal{O} be a commutative ring

•
$$\sum \mathcal{O}^2 = \left\{ \sum_{i=1}^n \alpha_i^2; \ \alpha_i \in \mathcal{O}, n \in \mathbb{N} \right\}$$

- $\sum^{m} \mathcal{O}^2 = \left\{ \sum_{i=1}^{m} \alpha_i^2; \alpha_i \in \mathcal{O} \right\}$
- \bullet the Pythagoras number of the ring ${\cal O}$ is

$$\mathcal{P}(\mathcal{O}) = \inf \left\{ m \in \mathbb{N} \cup \{\infty\}; \sum \mathcal{O}^2 = \sum^m \mathcal{O}^2 \right\}$$

Theorem

Let K be a simplest cubic fields with basis $B_3(1,1)$. Then the Pythagoras number of \mathcal{O}_K is 6.

Note that the Pythagoras number of $\mathbb{Z}[\rho]$ is 6 for $a \geq 3$ (T., 2023+).

Thank you for your attention.