
Primes and squares with preassigned digits

Cathy Swaenepoel

IMJ-PRG, Université Paris Cité.

Numeration 2023,
Liège, May 25.

Cathy Swaenepoel Primes and squares with preassigned digits 1 / 37



Digits

Representation of an integer k > 0 in base g > 2:

k =
∑
j>0

εj(k)gj

where εj(k) ∈ {0, . . . , g − 1} is the digit of k at the position j.

base g expansion
independence?

←−−−−−→ multiplicative representation
(as a product of prime factors)

The study of the independence between the additive and the multiplicative structure of
the integers is one of the most important topics in number theory.
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Sum of digits of primes and polynomial values in AP

sg(k) = sum of digits of k in base g.

Gelfond’s problems (1968): estimate, as x→ +∞,

|{p 6 x, sg(p) ≡ a mod m}| and |{n 6 x, sg(P (n)) ≡ a mod m}| (degP > 2).

For primes: solved by Mauduit–Rivat (2010) in any base.

For polynomials P of degree 2: solved by Mauduit–Rivat (2009) in any base.

For polynomials P of degree > 3:
solved by Drmota–Mauduit–Rivat (2011) in all large enough prime bases,
lower bounds in any base by Dartyge–Tenenbaum (2006) and Stoll (2012),
still open in small bases.
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Primes and polynomial values with restricted digits

Let d ∈ {0, . . . , g − 1}.

Problem: estimate the number of primes or polynomial values with no digit d.

For almost primes: lower bounds by Dartyge–Mauduit (2000, 2001).

For primes :
solved by Maynard (2021) in any large enough base,
solved by Maynard (2019) in base 10 (lower and upper bounds of the same
order of magnitude).

For polynomials P of degree > 2: solved by Maynard (2021) in any large enough
base.

Cathy Swaenepoel Primes and squares with preassigned digits 4 / 37



Integers with preassigned digits
Representation of an integer k ∈ [0, gn[ in base g > 2:

k =
n−1∑
j=0

εj(k)gj , 0 6 εj 6 g − 1.

A ⊂ {0, . . . , n− 1}: set of positions,
d = (dj)j∈A: preassigned digits at these positions.

dn−2 d6 d4 d1

n−1 n−2 6 4 1 0

|{k < gn : ∀j ∈ A, εj(k) = dj}| = gn−|A|
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Integers with preassigned digits
Representation of an integer k ∈ [0, gn[ in base g > 2:

k =
n−1∑
j=0

εj(k)gj , 0 6 εj 6 g − 1.

A ⊂ {0, . . . , n− 1}: set of positions,
d = (dj)j∈A: preassigned digits at these positions.

dn−2 d6 d4 d1

n−1 n−2 6 4 1 0

| {k < gn : ∀j ∈ A, εj(k) = dj}︸ ︷︷ ︸
sparse set

if |A| → +∞ as n→ +∞

| = gn−|A|
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General problem
Problem: For an interesting subset E ⊂ N, estimate

|{k < gn : k ∈ E, ∀j ∈ A, εj(k) = dj}|

for A as large as possible.

Expected estimate (as n→ +∞) ?
If the digits of the integers of E are expected to be “random” then this should be about

|{k < gn : k ∈ E}| · 1
g|A|
∼


gn−|A|

log gn for E = primes,

g
n
2−|A| for E = squares.

(Recall that |{k < gn : ∀j ∈ A, εj(k) = dj}|
gn

= 1
g|A|

.)
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Prime numbers with preassigned digits
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Historical background

Goal: estimate |{p < gn : ∀j ∈ A, εj(p) = dj}| as n→ +∞.

Kátai (1986).

Wolke (2005): asymptotic, |A| 6 2
(|A| 6 (1− ε)

√
n under GRH).

Harman (2006): lower bound, |A| 6 constant.

Harman-Kátai (2008): asymptotic, |A| �
√
n(logn)−1.

Bourgain (2013): asymptotic, |A| � n4/7(logn)−4/7, in base 2.

Bourgain (2015): asymptotic, |A| 6 cn, in base 2 (c > 0 absolute constant).
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Result

Theorem 1 (S. 2020)

For any g > 2, there exist an explicit c = c(g) ∈ ]0, 1[ and δ = δ(g) > 0 such that for
any n > 1, for any A ⊂ {0, . . . , n− 1} satisfying {0, n− 1} ⊂ A and

|A| 6 cn,

for any (dj)j∈A ∈ {0, . . . , g − 1}A such that (d0, g) = 1 and dn−1 > 1, we have

|{p < gn : ∀j ∈ A, εj(p) = dj}| =
gn−|A|

log gn
g

ϕ(g)
(
1 +Og

(
n−δ

))
.

This generalizes Bourgain’s result (2015) to any base.
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Explicit values of c

Theorem 1 holds with c(g) given by

g 2 3 4 5 10 103 2200

c(g) · 102 0.21 0.31 0.36 0.40 0.47 0.68 0.90

Assuming GRH, Theorem 1 holds with c(g) given by

g 2 3 4 5 10 103 2200

c(g) · 102 1.6 2.4 2.9 3.1 3.7 5.2 6.9
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Squares with preassigned digits
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Squares vs primes

Denote S = {`2, ` > 0} the set of squares.

Goal: estimate |S ∩ {k < gn : ∀j ∈ A, εj(k) = dj}| as n→ +∞.

Squares are a priori easier to handle than primes
(distribution in short intervals, in arithmetic progressions, ...).

But

squares are sparser than primes,
there are algebraic constraints on the digits of squares.

→ New difficulties for squares.
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Special case where A = {0, n− 1}

Denoting N0 = dn−1g
n−1, N1 = (dn−1 + 1)gn−1, we have

|S ∩ {k < gn : ε0(k) = d0, εn−1(k) = dn−1}|

= |{N0 6 k < N1 : k ∈ S, k ≡ d0 mod g}|

= |{
√
N0 6 ` <

√
N1 : `2 ≡ d0 mod g}|

= R(g, d0)
(√

dn−1 + 1−
√
dn−1

)
g

n−3
2 (1 + o(1)) (n→ +∞)

where
R(g, d0) = number of square roots of d0 modulo g.
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A special case where A = {n2 − 1}

Gross–Vacca (1968): in base 2, for any n divisible by 4, for j = n
2 − 1,

|S ∩ {k < 2n : εj(k) = 1}| = 2
n
2−1

(
1− 2−

n
4 +1

)
= 2

n
2−1(1 + o(1)).

Also Prodinger–Wagner (2009) and Preparata–Vacca (2012).
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A case where |A| 6 log n

Bassily–Kátai (1996): Let g > 2 and δ > 0.
For any A ⊂ {0, . . . , n− 1} and d = (dj)j∈A ∈ {0, . . . , g − 1}A such that

|A| 6 logn

and
n1/3 6 minA 6 maxA 6 n− n1/3,

we have

|S ∩ {k < gn : ∀j ∈ A, εj(k) = dj}| = g
n
2−|A|(1 +Og,δ(n−δ)).
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Hypothesis H on the preassigned digits
v2(g) = 2-adic valuation of g.

If g is odd or v2(g) > 3,

H(g) : {0} ⊂ A, (d0, g) = 1, d0 square mod g.

If v2(g) = 2,

H(g) : {0, 1} ⊂ A, (d0, g) = 1, d1g + d0 square mod g2.

If v2(g) = 1 (e.g. g = 2 or g = 10),

H(g) : {0, 1, 2} ⊂ A, (d0, g) = 1, d2g
2 + d1g + d0 square mod g3.

Under H(g), we have for any k > 0,

(∀j ∈ A, εj(k) = dj)⇒ k is a square modulo any power of g.
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Hypothesis H on the preassigned digits
v2(g) = 2-adic valuation of g.

If g is odd or v2(g) > 3,

H(g) : {0} ⊂ A, (d0, g) = 1, d0 square mod g.

If v2(g) = 2,

H(g) : {0, 1} ⊂ A, (d0, g) = 1, d1g + d0 square mod g2.

If v2(g) = 1 (e.g. g = 2 or g = 10),

H(g) : {0, 1, 2} ⊂ A, (d0, g) = 1, d2g
2 + d1g + d0 square mod g3.

Under H(g), we have for any k > 0,

(∀j ∈ A, εj(k) = dj)⇒ k is a square modulo any power of g.
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Result

Theorem 2 (S. 2023+)

For any g > 2, there exist an explicit c = c(g) ∈ ]0, 1/2[ and δ = δ(g) > 0 such that
for any n > 3, for any A ⊂ {0, . . . , n− 1} and d = (dj)j∈A ∈ {0, . . . , g − 1}A
satisfying H(g), n− 1 ∈ A, dn−1 > 1 and

|A| 6 cn,

we have
|S ∩ {k < gn : ∀j ∈ A, εj(k) = dj}| = S(g, n,A,d)

(
1 +Og

(
n−δ

))
where

S(g, n,A,d) =
∑
k<gn

∀j∈A, εj(k)=dj

η(g)
2
√
k
, η(g) =

{
2ω(g), g odd,
2ω(g)+1, g even.

In particular, the order of magnitude of |S ∩ {k < gn : ∀j ∈ A, εj(k) = dj}| is g
n
2−|A|.
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Explicit values of c

Theorem 2 holds with c(g) given by

g 2 3 4 5 10 16 232 264

c(g) · 102 0.5 0.9 1.1 1.3 1.6 1.8 3.6 4
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An example where (d0, g) > 1 (g = 10, d0 = 5)

Lemma (S.)
Let m such that n

4 −m→ +∞ as n→ +∞. Choose

A = {0, 2, 4, . . . , 2(m− 1), n− 1}.

Let s such that s ≡ 1 mod 8 and s ≡ 0 mod 52m−1 and let d ∈ {0, . . . , 9}. Choose

d2i = ε2i(s) for i = 0, . . . ,m− 1, dn−1 = d.

Then we have

|S ∩ {k < 10n : ∀j ∈ A, εj(k) = dj}| =
C(d)
2|A|

10 n
2−|A| (1 + o(1))

where C(d) > 0 depends only on d.

So the order of magnitude may be smaller than 10 n
2−|A|.

Idea: at the positions 1, 3, . . . , 2m− 3, the digits of k have to be the digits of s.
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Notations for the proof of Theorem 2

e(x) = exp(2iπx), x ∈ R.

S = {`2, ` > 0} the set of squares.

D(n,A,d) = {k < gn : ∀j ∈ A, εj(k) = dj}.

N = gn.

We want to estimate ∑
N06k<N1

1S(k)1D(n,A,d)(k)

where N0 = dn−1g
n−1 and N1 = (dn−1 + 1)gn−1.
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Method

Use the circle method:

∑
N06k<N1

1S(k)1D(n,A,d)(k) =
∫ 1

0
S(α)R(α)dα

where

S(α) =
∑

N06k<N1

1S(k) e(kα)
︸ ︷︷ ︸
can be large only when α is close to
a rational with small denominator

i.e. α is in a major arc

and R(α) =
∑

N06k<N1

1D(n,A,d)(k) e(kα)
︸ ︷︷ ︸

depends on the digital conditions

.

integral over major arcs → main term (+ error term)
integral over minor arcs → error term
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Fourier transform of 1D(n,A,d)

Fn(α) = 1
gn−|A|

∑
k<gn

1D(n,A,d)(k) e(kα) = 1
gn−|A|

R(α).

By writing k in base g, we obtain:

|Fn(α)| =
∏

06j6n−1
j /∈A

Φg
(
gjα
)

g
where Φg(t) =

∣∣∣∣∣
g−1∑
v=0

e(vt)

∣∣∣∣∣ =
∣∣∣∣ sin πgtsin πt

∣∣∣∣ .
For g = 2,

|Fn(α)| =
∏

06j6n−1
j /∈A

∣∣cosπ2jα
∣∣ .

We need very strong upper bounds for ‖Fn‖1 and some (weighted) averages of |Fn (a/q)|.
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Integers with preassigned digits in arithmetic progressions
Using a strong bound for some weighted average of |Fn (a/q)|, we obtain:

Proposition (S. 2020)
Let 0 < ε < 1/4 and 0 < c < 2ε. If |A| 6 cn then

∑
q6Q

(q,g)=1

max
r∈Z

∣∣∣∣∣∣∣∣
∑
k<gn

k≡rmod q

1D(n,A,d)(k)− gn−|A|

q

∣∣∣∣∣∣∣∣�ε,c g
n−|A| n

(
log3 n

n

) 2ε
c
−1

where Q = gn(
1
4−ε).

On average over all q 6 Q such that (q, g) = 1, the integers k < gn such that

∀j ∈ A, εj(k) = dj

are well distributed in arithmetic progressions modulo q (if |A| is small enough).
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Major arcs and minor arcs

B1 6 B “small” powers of N = gn with B1 = o(B).

Major arcs:
M =

⋃
16q6B1

⋃
16a6q
(a,q)=1

M(q, a)

where M(q, a) is the interval
∣∣∣α− a

q

∣∣∣ 6 B
qN modulo 1.

Minor arcs:
m = [0, 1[ \M.
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Minor arcs contribution
∫
m

∣∣∣S(α)R(α)
∣∣∣ dα = gn−|A|

∫
m

∣∣∣S(α)Fn(α)
∣∣∣ dα 6 gn−|A| ‖Fn‖1 sup

α∈m
|S(α)|

Use the strong upper bound:
‖Fn‖1 � N ξ−1 logN (trivial: 1)

where ξ is explicit and ξ → 0 as |A|/n→ 0.

Use a classical estimate on Weyl sums to bound |S(α)| over the minor arcs:

sup
α∈m
|S(α)| = sup

α∈m

∣∣∣∣∣∣
∑

√
N06`<

√
N1

e(`2α)

∣∣∣∣∣∣�
√
N√
B1
. (trivial:

√
N)

This gives ∫
m

∣∣∣S(α)R(α)
∣∣∣ dα� g

n
2−|A|

N ξ logN√
B1

.
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Major arcs contribution

∫
M
S(α)R(α)dα =

∑
16q6B1

∑
16a6q
(a,q)=1

∫∣∣α−a
q

∣∣6 B
qN

S(α)R(α)dα

First step: replace the indicator function of the interval
∣∣∣α− a

q

∣∣∣ 6 B
qN by a well chosen

smooth function:
α 7→ w

(
qN
B

(
α− a

q

))
.

This creates an error term which is bounded by
∫
m

∣∣∣S(α)R(α)
∣∣∣ dα.
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Function w

Using a construction of Ingham or Iwaniec, one can construct a function w such that:
0 6 w 6 1,
w = 1 on [−1, 1],
suppw ⊂ [−2, 2],
w ∈ C∞(R),
ŵ(y) = O

(
e−|y|

1/2
)
for any y ∈ R.

Graph of w Graph of ŵ
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Contribution of the major arc around a/q

We want to estimate the “contribution of the major arc around a/q”:∫
R
w
(
qN
B

(
α− a

q

))
S(α)R(α) dα

=
∫
R
w
(
qN
B

(
α− a

q

)) ∑
N06k1<N1

1S(k1) e (k1α)
∑

N06k2<N1

1D(n,A,d)(k2) e (−k2α) dα

=
∑

N06k2<N1

1D(n,A,d)(k2) e
(−k2a

q

) q−1∑
r=0

e
(
ra

q

) ∑
N06k1<N1
k1≡rmod q

1S(k1) B
qN ŵ

(
(k2 − k1) B

qN

)
.
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Contribution of the major arc around a/q

Up to admissible errors,

∑
N06k1<N1
k1≡rmod q

1S(k1) B
qN

ŵ

(
(k2 − k1) B

qN

)

y
R(q, r)
q

∫ N1

N0

B

qN
ŵ

(
(k2 − t)

B

qN

)
dt

2
√
t

y
R(q, r)
q

1
2
√
k2
.

partial summation
estimate for the number of squares in
arithmetic progressions (R(q, r) =
number of square roots of r mod q)

size of ŵ at infinity
Fourier inversion
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Contribution of the major arc around a/q

Up to an admissible error, the contribution of the major arc around a/q is

∑
N06k2<N1

1D(n,A,d)(k2)
2
√
k2

e
(−k2a

q

) q−1∑
r=0

e
(
ra

q

)
R(q, r)
q

=
∑

N06k<N1

1D(n,A,d)(k)
2
√
k

e
(−ka

q

)
G(q, a)
q

where G(q, a) is the quadratic Gauss sum:

G(q, a) =
q∑

u=1
e
(
au2

q

)
.

Cathy Swaenepoel Primes and squares with preassigned digits 30 / 37



Contribution of all major arcs around a/q, q fixed

Up to an admissible error, the contribution of all major arcs around a/q (q fixed) is

C(q) :=
∑

N06k<N1

1D(n,A,d)(k)
2
√
k

H(q, k)

where
H(q, k) = 1

q

∑
16a6q
(a,q)=1

G(q, a) e
(−ka

q

)
=
∑
d | q

µ(d)R
(
q

d
, k

)
∈ Z.

q 7→ H(q, k) is multiplicative.
For any k such that

(
k
p

)
= 1, we have

H(p, k) = 1, H(pν , k) = 0 for any ν > 2.
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Contribution of all major arcs around a/q, q fixed
For simplicity, we assume here that the base g is a prime p > 3.
Write q = pνq′ where p - q′.
Three cases depending on ν and q′ (under the hypothesis H(g)):

1 If ν > 2 then C(q) = 0.
2 If ν ∈ {0, 1} and q′ = 1 (i.e q = 1 or q = p) then

C(q) =
∑

N06k<N1

1D(n,A,d)(k)
2
√
k

.

This gives the main term.
3 If ν ∈ {0, 1} and q′ > 2 then

C(q) =
∑

N06k<N1

1D(n,A,d)(k)
2
√
k

H(q′, k).

We show that this is small on average over q′ > 2 with (q′, g) = 1 (see below).
This gives an error term.
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Contribution of all major arcs around a/q, q fixed, third case

We want to prove that

∑
26q′6B1
(q′,g)=1

∣∣∣∣∣∣
∑

N06k<N1

1D(n,A,d)(k)
√
k

H(q′, k)

∣∣∣∣∣∣ = o(g
n
2−|A|).

After using the upper bound |G(q′, a)| �
√
q′ and a partial summation,

it suffices to show that

∑
26q′6B1
(q′,g)=1

1√
q′

∑
16a6q′
(a,q′)=1

max
0<t6gn

∣∣∣∣∣∣ 1
gn−|A|

∑
k<t

1D(n,A,d)(k) e
(
ak

q′

)∣∣∣∣∣∣︸ ︷︷ ︸
=

{
|FT of 1D(n,A,d) at a/q′| if t = gn

“incomplete sum” otherwise

= o(1).

Cathy Swaenepoel Primes and squares with preassigned digits 33 / 37



A weighted average of |Fn(a/q)|

To handle the “complete sums”, we use:

Lemma (S. 2020)
Let 0 < c < 1

8 . If |A| 6 cn then

∑
26q6Q
(q,g)=1

1
√
q

∑
16a6q
(a,q)=1

∣∣∣∣Fn (aq
)∣∣∣∣�c

(
log3 n

n

) 1
8c
−1

where Q = g
n
8 and Fn is the Fourier transform of 1D(n,A,d).
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How to handle the “incomplete sums”?

For a good choice of m, write [0, t[ as the disjoint union of intervals of the form
[`gm, (`+ 1)gm[ and at most one interval of length < gm.

max
0<t6gn

∣∣∣∣∣∣ 1
gn−|A|

∑
k<t

1D(n,A,d)(k) e (kα)

∣∣∣∣∣∣
6

∣∣∣∣∣∣ 1
gm−|A′|

∑
h<gm

1D(m,A′,d′)(h) e (hα)

∣∣∣∣∣∣︸ ︷︷ ︸
|FT of 1D(m,A′,d′) at α|

+gm+|A|−n

where A′ = A ∩ {0, . . . ,m− 1} and d′ = (dj)j∈A′ ∈ {0, . . . , g − 1}A′ .

Apply the previous bound for the Fourier transform.
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Conclusion of the proof
With a good choice of the parameters B1 and B and taking c sufficiently small, we get∑

k<gn

1S(k)1D(n,A,d)(k) = S(g, n,A,d)
(
1 +Og

(
n−δ

))
for some δ > 0, where

S(g, n,A,d) =
∑
k<gn

∀j∈A, εj(k)=dj

η(g)
2
√
k
, η(g) =

{
2ω(g), g odd,
2ω(g)+1, g even.

The main term comes from the major arcs around a/q with
q ∈ {1, p} if g is a prime p > 3,
q ∈ {1, 4, 8} if g = 2,
q ∈ {1, 4, 5, 8, 20, 40} if g = 10.
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Conclusion

In any base g > 2, we obtain an asymptotic formula for the number of squares

with a positive proportion of preassigned digits.

We give explicit values for the proportion of digits this method allows us to

preassign.

Thank you for your attention!
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