Primes and squares with preassigned digits

Cathy Swaenepoel

IMJ-PRG, Université Paris Cité.

Numeration 2023,
Liège, May 25.

Representation of an integer $k \geqslant 0$ in base $g \geqslant 2$:

$$
k=\sum_{j \geqslant 0} \varepsilon_{j}(k) g^{j}
$$

where $\varepsilon_{j}(k) \in\{0, \ldots, g-1\}$ is the digit of k at the position j.
independence?
base g expansion \longleftrightarrow multiplicative representation (as a product of prime factors)

The study of the independence between the additive and the multiplicative structure of the integers is one of the most important topics in number theory.
$s_{g}(k)=$ sum of digits of k in base g.
Gelfond's problems (1968): estimate, as $x \rightarrow+\infty$,

$$
\left|\left\{p \leqslant x, s_{g}(p) \equiv a \bmod m\right\}\right| \quad \text { and } \quad\left|\left\{n \leqslant x, s_{g}(P(n)) \equiv a \bmod m\right\}\right| \quad(\operatorname{deg} P \geqslant 2)
$$

- For primes: solved by Mauduit-Rivat (2010) in any base.
- For polynomials P of degree 2: solved by Mauduit-Rivat (2009) in any base.
- For polynomials P of degree $\geqslant 3$:
- solved by Drmota-Mauduit-Rivat (2011) in all large enough prime bases,
- lower bounds in any base by Dartyge-Tenenbaum (2006) and Stoll (2012),
- still open in small bases.

Let $d \in\{0, \ldots, g-1\}$.
Problem: estimate the number of primes or polynomial values with no digit d.

- For almost primes: lower bounds by Dartyge-Mauduit (2000, 2001).
- For primes :
- solved by Maynard (2021) in any large enough base,
- solved by Maynard (2019) in base 10 (lower and upper bounds of the same order of magnitude).
- For polynomials P of degree $\geqslant 2$: solved by Maynard (2021) in any large enough base.

Integers with preassigned digits

Representation of an integer $k \in\left[0, g^{n}[\right.$ in base $g \geqslant 2$:

$$
k=\sum_{j=0}^{n-1} \varepsilon_{j}(k) g^{j}, \quad 0 \leqslant \varepsilon_{j} \leqslant g-1 .
$$

- $A \subset\{0, \ldots, n-1\}$: set of positions,
- $\boldsymbol{d}=\left(d_{j}\right)_{j \in A}$: preassigned digits at these positions.

$\left\|d_{n-2}\right\|$				d_{6}			d_{4}				d_{1}	
$n-1 \quad n-2$				6			4				1	0

Integers with preassigned digits

Representation of an integer $k \in\left[0, g^{n}[\right.$ in base $g \geqslant 2$:

$$
k=\sum_{j=0}^{n-1} \varepsilon_{j}(k) g^{j}, \quad 0 \leqslant \varepsilon_{j} \leqslant g-1 .
$$

- $A \subset\{0, \ldots, n-1\}$: set of positions,
- $\boldsymbol{d}=\left(d_{j}\right)_{j \in A}$: preassigned digits at these positions.

	d_{n-2}					d_{6}		d_{4}			d_{1}

$$
|\underbrace{\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}}_{\begin{array}{c}
\text { sparse set } \\
\text { if }|A| \rightarrow+\infty \text { as } n \rightarrow+\infty
\end{array}}|=g^{n-|A|}
$$

Problem: For an interesting subset $E \subset \mathbb{N}$, estimate

$$
\left|\left\{k<g^{n}: k \in E, \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|
$$

for A as large as possible.
Expected estimate (as $n \rightarrow+\infty$) ?
If the digits of the integers of E are expected to be "random" then this should be about

$$
\left|\left\{k<g^{n}: k \in E\right\}\right| \cdot \frac{1}{g^{|A|}} \sim \begin{cases}\frac{g^{n-|A|}}{\log g^{n}} & \text { for } E=\text { primes } \\ g^{\frac{n}{2}-|A|} & \text { for } E=\text { squares }\end{cases}
$$

(Recall that $\frac{\left|\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|}{g^{n}}=\frac{1}{g^{|A|}}$.)

Prime numbers with preassigned digits

Goal: estimate $\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|$ as $n \rightarrow+\infty$.

- Kátai (1986).
- Wolke (2005): asymptotic, $|A| \leqslant 2$

$$
(|A| \leqslant(1-\varepsilon) \sqrt{n} \text { under GRH })
$$

- Harman (2006): lower bound, $|A| \leqslant$ constant.
- Harman-Kátai (2008): asymptotic, $|A| \ll \sqrt{n}(\log n)^{-1}$.
- Bourgain (2013): asymptotic, $|A| \ll n^{4 / 7}(\log n)^{-4 / 7}$, in base 2 .
- Bourgain (2015): asymptotic, $|A| \leqslant c n$, in base 2 ($c>0$ absolute constant).

Theorem 1 (S. 2020)

For any $g \geqslant 2$, there exist an explicit $c=c(g) \in] 0,1[$ and $\delta=\delta(g)>0$ such that for any $n \geqslant 1$, for any $A \subset\{0, \ldots, n-1\}$ satisfying $\{0, n-1\} \subset A$ and

$$
|A| \leqslant c n
$$

for any $\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ such that $\left(d_{0}, g\right)=1$ and $d_{n-1} \geqslant 1$, we have

$$
\left|\left\{p<g^{n}: \forall j \in A, \varepsilon_{j}(p)=d_{j}\right\}\right|=\frac{g^{n-|A|}}{\log g^{n}} \frac{g}{\varphi(g)}\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

This generalizes Bourgain's result (2015) to any base.

Theorem 1 holds with $c(g)$ given by

g	2	3	4	5	10	10^{3}	2^{200}
$c(g) \cdot 10^{2}$	0.21	0.31	0.36	0.40	0.47	0.68	0.90

Assuming GRH, Theorem 1 holds with $c(g)$ given by

g	2	3	4	5	10	10^{3}	2^{200}
$c(g) \cdot 10^{2}$	1.6	2.4	2.9	3.1	3.7	5.2	6.9

Squares with preassigned digits

Denote $\mathcal{S}=\left\{\ell^{2}, \ell \geqslant 0\right\}$ the set of squares.
Goal: estimate $\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|$ as $n \rightarrow+\infty$.

- Squares are a priori easier to handle than primes (distribution in short intervals, in arithmetic progressions, ...).

But

- squares are sparser than primes,
- there are algebraic constraints on the digits of squares.
\rightarrow New difficulties for squares.

Denoting $N_{0}=d_{n-1} g^{n-1}, N_{1}=\left(d_{n-1}+1\right) g^{n-1}$, we have

$$
\begin{aligned}
& \left|\mathcal{S} \cap\left\{k<g^{n}: \varepsilon_{0}(k)=d_{0}, \varepsilon_{n-1}(k)=d_{n-1}\right\}\right| \\
& =\left|\left\{N_{0} \leqslant k<N_{1}: k \in \mathcal{S}, k \equiv d_{0} \bmod g\right\}\right| \\
& =\left|\left\{\sqrt{N_{0}} \leqslant \ell<\sqrt{N_{1}}: \ell^{2} \equiv d_{0} \bmod g\right\}\right| \\
& =R\left(g, d_{0}\right)\left(\sqrt{d_{n-1}+1}-\sqrt{d_{n-1}}\right) g^{\frac{n-3}{2}}(1+o(1)) \quad(n \rightarrow+\infty)
\end{aligned}
$$

where

$$
R\left(g, d_{0}\right)=\text { number of square roots of } d_{0} \text { modulo } g .
$$

Gross-Vacca (1968): in base 2, for any n divisible by 4 , for $j=\frac{n}{2}-1$,

$$
\left|\mathcal{S} \cap\left\{k<2^{n}: \varepsilon_{j}(k)=1\right\}\right|=2^{\frac{n}{2}-1}\left(1-2^{-\frac{n}{4}+1}\right)=2^{\frac{n}{2}-1}(1+o(1)) .
$$

Also Prodinger-Wagner (2009) and Preparata-Vacca (2012).

Bassily-Kátai (1996): Let $g \geqslant 2$ and $\delta>0$.
For any $A \subset\{0, \ldots, n-1\}$ and $\boldsymbol{d}=\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ such that

$$
|A| \leqslant \log n
$$

and

$$
n^{1 / 3} \leqslant \min A \leqslant \max A \leqslant n-n^{1 / 3},
$$

we have

$$
\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|=g^{\frac{n}{2}-|A|}\left(1+O_{g, \delta}\left(n^{-\delta}\right)\right) .
$$

$v_{2}(g)=2$-adic valuation of g.

- If g is odd or $v_{2}(g) \geqslant 3$,

$$
\mathcal{H}(g): \quad\{0\} \subset A,\left(d_{0}, g\right)=1, d_{0} \text { square } \bmod g
$$

- If $v_{2}(g)=2$,

$$
\mathcal{H}(g): \quad\{0,1\} \subset A,\left(d_{0}, g\right)=1, d_{1} g+d_{0} \text { square } \bmod g^{2} .
$$

- If $v_{2}(g)=1$ (e.g. $g=2$ or $g=10$),

$$
\mathcal{H}(g): \quad\{0,1,2\} \subset A,\left(d_{0}, g\right)=1, d_{2} g^{2}+d_{1} g+d_{0} \text { square } \bmod g^{3} .
$$

$v_{2}(g)=2$-adic valuation of g.

- If g is odd or $v_{2}(g) \geqslant 3$,

$$
\mathcal{H}(g): \quad\{0\} \subset A,\left(d_{0}, g\right)=1, d_{0} \text { square } \bmod g .
$$

- If $v_{2}(g)=2$,

$$
\mathcal{H}(g): \quad\{0,1\} \subset A,\left(d_{0}, g\right)=1, d_{1} g+d_{0} \text { square } \bmod g^{2} .
$$

- If $v_{2}(g)=1$ (e.g. $g=2$ or $g=10$),

$$
\mathcal{H}(g): \quad\{0,1,2\} \subset A,\left(d_{0}, g\right)=1, d_{2} g^{2}+d_{1} g+d_{0} \text { square } \bmod g^{3} .
$$

Under $\mathcal{H}(g)$, we have for any $k \geqslant 0$,
$\left(\forall j \in A, \varepsilon_{j}(k)=d_{j}\right) \Rightarrow k$ is a square modulo any power of g.

Theorem 2 (S. 2023+)

For any $g \geqslant 2$, there exist an explicit $c=c(g) \in] 0,1 / 2[$ and $\delta=\delta(g)>0$ such that for any $n \geqslant 3$, for any $A \subset\{0, \ldots, n-1\}$ and $d=\left(d_{j}\right)_{j \in A} \in\{0, \ldots, g-1\}^{A}$ satisfying $\mathcal{H}(g), n-1 \in A, d_{n-1} \geqslant 1$ and

$$
|A| \leqslant c n,
$$

we have

$$
\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|=\mathfrak{S}(g, n, A, \boldsymbol{d})\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

where

$$
\mathfrak{S}(g, n, A, \boldsymbol{d})=\sum_{\substack{k<g^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \frac{\eta(g)}{2 \sqrt{k}}, \quad \eta(g)= \begin{cases}2^{\omega(g)}, & g \text { odd }, \\ 2^{\omega(g)+1}, & g \text { even } .\end{cases}
$$

In particular, the order of magnitude of $\left|\mathcal{S} \cap\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|$ is $g^{\frac{n}{2}-|A|}$.

Theorem 2 holds with $c(g)$ given by

g	2	3	4	5	10	16	2^{32}	2^{64}
$c(g) \cdot 10^{2}$	0.5	0.9	1.1	1.3	1.6	1.8	3.6	4

Lemma (S.)

Let m such that $\frac{n}{4}-m \rightarrow+\infty$ as $n \rightarrow+\infty$. Choose

$$
A=\{0,2,4, \ldots, 2(m-1), n-1\} .
$$

Let s such that $s \equiv 1 \bmod 8$ and $s \equiv 0 \bmod 5^{2 m-1}$ and let $d \in\{0, \ldots, 9\}$. Choose

$$
d_{2 i}=\varepsilon_{2 i}(s) \text { for } i=0, \ldots, m-1, \quad d_{n-1}=d
$$

Then we have

$$
\left|\mathcal{S} \cap\left\{k<10^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}\right|=\frac{C(d)}{2^{|A|}} 10^{\frac{n}{2}-|A|}(1+o(1))
$$

where $C(d)>0$ depends only on d.
So the order of magnitude may be smaller than $10^{\frac{n}{2}-|A|}$.
Idea: at the positions $1,3, \ldots, 2 m-3$, the digits of k have to be the digits of s.

- $\mathrm{e}(x)=\exp (2 i \pi x), x \in \mathbb{R}$.
- $\mathcal{S}=\left\{\ell^{2}, \ell \geqslant 0\right\}$ the set of squares.
- $\mathcal{D}(n, A, \boldsymbol{d})=\left\{k<g^{n}: \forall j \in A, \varepsilon_{j}(k)=d_{j}\right\}$.
- $N=g^{n}$.

We want to estimate

$$
\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, d)}(k)
$$

where $N_{0}=d_{n-1} g^{n-1}$ and $N_{1}=\left(d_{n-1}+1\right) g^{n-1}$.

Use the circle method:

$$
\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, d)}(k)=\int_{0}^{1} S(\alpha) \overline{R(\alpha)} d \alpha
$$

where

$$
\underbrace{S(\alpha)=\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{S}}(k) \mathrm{e}(k \alpha)}_{\begin{array}{c}
\text { can be large only when } \alpha \text { is close to } \\
\text { a rational with small denominator }
\end{array}} \quad \text { and } \quad \underbrace{R(\alpha)=\sum_{N_{0} \leqslant k<N_{1}} \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k) \mathrm{e}(k \alpha)}_{\text {depends on the digital conditions }} .
$$ i.e. α is in a major arc

- integral over major arcs \rightarrow main term (+ error term)
- integral over minor arcs \rightarrow error term

$$
F_{n}(\alpha)=\frac{1}{g^{n-|A|}} \sum_{k<g^{n}} \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k) \mathrm{e}(k \alpha)=\frac{1}{g^{n-|A|}} R(\alpha)
$$

By writing k in base g, we obtain:

$$
\left|F_{n}(\alpha)\right|=\prod_{\substack{0 \leqslant j \leqslant n-1 \\ j \notin A}} \frac{\Phi_{g}\left(g^{j} \alpha\right)}{g} \quad \text { where } \Phi_{g}(t)=\left|\sum_{v=0}^{g-1} \mathrm{e}(v t)\right|=\left|\frac{\sin \pi g t}{\sin \pi t}\right|
$$

For $g=2$,

$$
\left|F_{n}(\alpha)\right|=\prod_{\substack{0 \leqslant j \leqslant n-1 \\ j \notin A}}\left|\cos \pi 2^{j} \alpha\right|
$$

We need very strong upper bounds for $\left\|F_{n}\right\|_{1}$ and some (weighted) averages of $\left|F_{n}(a / q)\right|$.

Using a strong bound for some weighted average of $\left|F_{n}(a / q)\right|$, we obtain:
Proposition (S. 2020)
Let $0<\varepsilon<1 / 4$ and $0<c<2 \varepsilon$. If $|A| \leqslant c n$ then

$$
\sum_{\substack{q \leqslant Q \\(q, g)=1}} \max _{r \in \mathbb{Z}}\left|\sum_{\substack{k<g^{n} \\ k \equiv r \bmod q}} \mathbf{1}_{\mathcal{D}(n, A, d)}(k)-\frac{g^{n-|A|}}{q}\right|<_{\varepsilon, c} g^{n-|A|} n\left(\frac{\log ^{3} n}{n}\right)^{\frac{2 \varepsilon}{c}-1}
$$

where $Q=g^{n\left(\frac{1}{4}-\varepsilon\right)}$.

On average over all $q \leqslant Q$ such that $(q, g)=1$, the integers $k<g^{n}$ such that

$$
\forall j \in A, \varepsilon_{j}(k)=d_{j}
$$

are well distributed in arithmetic progressions modulo q (if $|A|$ is small enough).
$B_{1} \leqslant B$ "small" powers of $N=g^{n}$ with $B_{1}=o(B)$.

- Major arcs:

$$
\mathfrak{M}=\bigcup_{\substack{1 \leqslant q \leqslant B_{1}}} \bigcup_{\substack{\leqslant a \leqslant q \\(a, q)=1}} \mathfrak{M}(q, a)
$$

where $\mathfrak{M}(q, a)$ is the interval $\left|\alpha-\frac{a}{q}\right| \leqslant \frac{B}{q N}$ modulo 1 .

- Minor arcs:

$$
\mathfrak{m}=[0,1[\backslash \mathfrak{M} .
$$

$$
\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha=g^{n-|A|} \int_{\mathfrak{m}}\left|S(\alpha) \overline{F_{n}(\alpha)}\right| d \alpha \leqslant g^{n-|A|}\left\|F_{n}\right\|_{1} \sup _{\alpha \in \mathfrak{m}}|S(\alpha)|
$$

- Use the strong upper bound:

$$
\left\|F_{n}\right\|_{1} \ll N^{\xi-1} \log N
$$

(trivial: 1)
where ξ is explicit and $\xi \rightarrow 0$ as $|A| / n \rightarrow 0$.

- Use a classical estimate on Weyl sums to bound $|S(\alpha)|$ over the minor arcs:

$$
\left.\sup _{\alpha \in \mathfrak{m}}|S(\alpha)|=\sup _{\alpha \in \mathfrak{m}}\left|\sum_{\sqrt{N_{0}} \leqslant \ell<\sqrt{N_{1}}} \mathrm{e}\left(\ell^{2} \alpha\right)\right| \ll \frac{\sqrt{N}}{\sqrt{B_{1}}} . \quad \text { (trivial: } \sqrt{N}\right)
$$

- This gives

$$
\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha \ll g^{\frac{n}{2}-|A|} \frac{N^{\xi} \log N}{\sqrt{B_{1}}}
$$

$$
\int_{\mathfrak{M}} S(\alpha) \overline{R(\alpha)} d \alpha=\sum_{\substack{1 \leqslant q \leqslant B_{1}}} \sum_{\substack{1 \leqslant a \leqslant q \\(a, q)=1}} \int_{\left|\alpha-\frac{a}{q}\right| \leqslant \frac{B}{q N}} S(\alpha) \overline{R(\alpha)} d \alpha
$$

First step: replace the indicator function of the interval $\left|\alpha-\frac{a}{q}\right| \leqslant \frac{B}{q N}$ by a well chosen smooth function:

$$
\alpha \mapsto w\left(\frac{q N}{B}\left(\alpha-\frac{a}{q}\right)\right)
$$

This creates an error term which is bounded by $\int_{\mathfrak{m}}|S(\alpha) \overline{R(\alpha)}| d \alpha$.

Using a construction of Ingham or Iwaniec, one can construct a function w such that:

- $0 \leqslant w \leqslant 1$,
- $w=1$ on $[-1,1]$,
- $\operatorname{supp} w \subset[-2,2]$,
- $w \in \mathcal{C}^{\infty}(\mathbb{R})$,
- $\widehat{w}(y)=O\left(e^{-|y|^{1 / 2}}\right)$ for any $y \in \mathbb{R}$.

Graph of \widehat{w}

We want to estimate the "contribution of the major arc around a / q ":
$\int_{\mathbb{R}} w\left(\frac{q N}{B}\left(\alpha-\frac{a}{q}\right)\right) S(\alpha) \overline{R(\alpha)} d \alpha$
$=\int_{\mathbb{R}} w\left(\frac{q N}{B}\left(\alpha-\frac{a}{q}\right)\right) \sum_{N_{0} \leqslant k_{1}<N_{1}} 1_{\mathcal{S}}\left(k_{1}\right) \mathrm{e}\left(k_{1} \alpha\right) \sum_{N_{0} \leqslant k_{2}<N_{1}} \mathbf{1}_{\mathcal{D}(n, A, d)}\left(k_{2}\right) \mathrm{e}\left(-k_{2} \alpha\right) d \alpha$
$=\sum_{N_{0} \leqslant k_{2}<N_{1}} \mathbf{1}_{\mathcal{D}(n, A, d)}\left(k_{2}\right) \mathrm{e}\left(\frac{-k_{2} a}{q}\right) \sum_{r=0}^{q-1} \mathrm{e}\left(\frac{r a}{q}\right) \sum_{\substack{N_{0} \leqslant k_{1}<N_{1} \\ k_{1} \equiv r \bmod q}} \mathbf{1}_{\mathcal{S}}\left(k_{1}\right) \frac{B}{q N} \widehat{w}\left(\left(k_{2}-k_{1}\right) \frac{B}{q N}\right)$.

Up to admissible errors,

$$
\begin{gathered}
\sum_{\substack{N_{0} \leqslant k_{1}<N_{1} \\
k_{1} \equiv r \bmod q}} \mathbf{1}_{\mathcal{S}}\left(k_{1}\right) \frac{B}{q N} \widehat{w}\left(\left(k_{2}-k_{1}\right) \frac{B}{q N}\right) \\
\downarrow \\
\frac{R(q, r)}{q} \int_{N_{0}}^{N_{1}} \frac{B}{q N} \widehat{w}\left(\left(k_{2}-t\right) \frac{B}{q N}\right) \frac{d t}{2 \sqrt{t}} \\
\downarrow \\
\frac{R(q, r)}{q} \frac{1}{2 \sqrt{k_{2}}} .
\end{gathered}
$$

- partial summation
- estimate for the number of squares in arithmetic progressions $(R(q, r)=$ number of square roots of $r \bmod q$)
- size of \widehat{w} at infinity
- Fourier inversion

Up to an admissible error, the contribution of the major arc around a / q is

$$
\begin{aligned}
& \quad \sum_{N_{0} \leqslant k_{2}<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}\left(k_{2}\right)}{2 \sqrt{k_{2}}} \mathrm{e}\left(\frac{-k_{2} a}{q}\right) \sum_{r=0}^{q-1} \mathrm{e}\left(\frac{r a}{q}\right) \frac{R(q, r)}{q} \\
& =\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k)}{2 \sqrt{k}} \mathrm{e}\left(\frac{-k a}{q}\right) \frac{G(q, a)}{q}
\end{aligned}
$$

where $G(q, a)$ is the quadratic Gauss sum:

$$
G(q, a)=\sum_{u=1}^{q} \mathrm{e}\left(\frac{a u^{2}}{q}\right)
$$

Up to an admissible error, the contribution of all major arcs around a / q (q fixed) is

$$
\mathcal{C}(q):=\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, d)}(k)}{2 \sqrt{k}} H(q, k)
$$

where

$$
H(q, k)=\frac{1}{q} \sum_{\substack{1 \leqslant a \leqslant q \\(a, q)=1}} G(q, a) \mathrm{e}\left(\frac{-k a}{q}\right)=\sum_{d \mid q} \mu(d) R\left(\frac{q}{d}, k\right) \in \mathbb{Z} .
$$

- $q \mapsto H(q, k)$ is multiplicative.
- For any k such that $\left(\frac{k}{p}\right)=1$, we have

$$
H(p, k)=1, \quad H\left(p^{\nu}, k\right)=0 \text { for any } \nu \geqslant 2 .
$$

Contribution of all major arcs around $a / q, q$ fixed

For simplicity, we assume here that the base g is a prime $p \geqslant 3$.
Write $q=p^{\nu} q^{\prime}$ where $p \nmid q^{\prime}$.
Three cases depending on ν and q^{\prime} (under the hypothesis $\mathcal{H}(g)$):
(1) If $\nu \geqslant 2$ then $\mathcal{C}(q)=0$.
(2) If $\nu \in\{0,1\}$ and $q^{\prime}=1$ (i.e $q=1$ or $q=p$) then

$$
\mathcal{C}(q)=\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, d)}(k)}{2 \sqrt{k}} .
$$

This gives the main term.
(3) If $\nu \in\{0,1\}$ and $q^{\prime} \geqslant 2$ then

$$
\mathcal{C}(q)=\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, d)}(k)}{2 \sqrt{k}} H\left(q^{\prime}, k\right) .
$$

We show that this is small on average over $q^{\prime} \geqslant 2$ with $\left(q^{\prime}, g\right)=1$ (see below). This gives an error term.

Contribution of all major arcs around $a / q, q$ fixed, third case

We want to prove that

$$
\sum_{\substack{2 \leqslant q^{\prime} \leqslant B_{1} \\\left(q^{\prime}, g\right)=1}}\left|\sum_{N_{0} \leqslant k<N_{1}} \frac{\mathbf{1}_{\mathcal{D}(n, A, d)}(k)}{\sqrt{k}} H\left(q^{\prime}, k\right)\right|=o\left(g^{\frac{n}{2}-|A|}\right) .
$$

After using the upper bound $\left|G\left(q^{\prime}, a\right)\right| \ll \sqrt{q^{\prime}}$ and a partial summation, it suffices to show that

$$
\begin{aligned}
\sum_{\substack{2 \leqslant q^{\prime} \leqslant B_{1} \\
\left(q^{\prime}, g\right)=1}} \frac{1}{\sqrt{q^{\prime}}} \sum_{\substack{1 \leqslant a \leqslant q^{\prime} \\
\left(a, q^{\prime}\right)=1}} \max _{0<t \leqslant g^{n}} & \underbrace{\left|\frac{1}{g^{n-|A|}} \sum_{k<t} \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k) \mathrm{e}\left(\frac{a k}{q^{\prime}}\right)\right|}=o(1) . \\
& = \begin{cases}\mid \text { FT of } \mathbf{1}_{\mathcal{D}(n, A, d)} \text { at } a / q^{\prime} \mid & \text { if } t=g^{n} \\
\text { "incomplete sum" } & \text { otherwise }\end{cases}
\end{aligned}
$$

To handle the "complete sums", we use:
Lemma (S. 2020)
Let $0<c<\frac{1}{8}$. If $|A| \leqslant c n$ then

$$
\sum_{\substack{2 \leqslant q \leqslant Q \\(q, g)=1}} \frac{1}{\sqrt{q}} \sum_{\substack{1 \leqslant a \leqslant q \\(a, q)=1}}\left|F_{n}\left(\frac{a}{q}\right)\right|<_{c}\left(\frac{\log ^{3} n}{n}\right)^{\frac{1}{8 c}-1}
$$

where $Q=g^{\frac{n}{8}}$ and F_{n} is the Fourier transform of $\mathbf{1}_{\mathcal{D}(n, A, d)}$.

- For a good choice of m, write $[0, t[$ as the disjoint union of intervals of the form $\left[\ell g^{m},(\ell+1) g^{m}\left[\right.\right.$ and at most one interval of length $<g^{m}$.

$$
\begin{aligned}
& \max _{0<t \leqslant g^{n}}\left|\frac{1}{g^{n-|A|}} \sum_{k<t} \mathbf{1}_{\mathcal{D}(n, A, d)}(k) \mathrm{e}(k \alpha)\right| \\
& \leqslant \underbrace{\left.\frac{1}{g^{m-\left|A^{\prime}\right|}} \sum_{h<g^{m}} \mathbf{1}_{\mathcal{D}\left(m, A^{\prime}, \boldsymbol{d}^{\prime}\right)}(h) \mathrm{e}(h \alpha) \right\rvert\,}_{\mid \mathrm{FT} \text { of } \mathbf{1}_{\mathcal{D}\left(m, A^{\prime}, d^{\prime}\right)} \text { at } \alpha \mid}+g^{m+|A|-n}
\end{aligned}
$$

where $A^{\prime}=A \cap\{0, \ldots, m-1\}$ and $\boldsymbol{d}^{\prime}=\left(d_{j}\right)_{j \in A^{\prime}} \in\{0, \ldots, g-1\}^{A^{\prime}}$.

- Apply the previous bound for the Fourier transform.

With a good choice of the parameters B_{1} and B and taking c sufficiently small, we get

$$
\sum_{k<g^{n}} \mathbf{1}_{\mathcal{S}}(k) \mathbf{1}_{\mathcal{D}(n, A, \boldsymbol{d})}(k)=\mathfrak{S}(g, n, A, \boldsymbol{d})\left(1+O_{g}\left(n^{-\delta}\right)\right)
$$

for some $\delta>0$, where

$$
\mathfrak{S}(g, n, A, \boldsymbol{d})=\sum_{\substack{k<g^{n} \\ \forall j \in A, \varepsilon_{j}(k)=d_{j}}} \frac{\eta(g)}{2 \sqrt{k}}, \quad \eta(g)= \begin{cases}2^{\omega(g)}, & g \text { odd } \\ 2^{\omega(g)+1}, & g \text { even } .\end{cases}
$$

The main term comes from the major arcs around a / q with

- $q \in\{1, p\}$ if g is a prime $p \geqslant 3$,
- $q \in\{1,4,8\}$ if $g=2$,
- $q \in\{1,4,5,8,20,40\}$ if $g=10$.
- In any base $g \geqslant 2$, we obtain an asymptotic formula for the number of squares with a positive proportion of preassigned digits.
- We give explicit values for the proportion of digits this method allows us to preassign.
- In any base $g \geqslant 2$, we obtain an asymptotic formula for the number of squares with a positive proportion of preassigned digits.
- We give explicit values for the proportion of digits this method allows us to preassign.

Thank you for your attention!

