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Introduction
Regular and backward continued fractions

Each x ∈ [0, 1] can be written as a regular continued fraction given by

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

.

We have an(x) = g ◦ τn−1,
where τ(x) = {1/x} = 1/x − b1/xc and g(x) = b1/xc.
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τ has an ergodic invariant probability measure m which is equivalent to
the Lebesgue measure λ.
We have

∫
gdm =

∫
gdλ =∞.
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By Aaronson’s theorem we can not get a strong law of large
numbers for (an).
Aaronson’s theorem says the following:
Let (X ,B, µ,T ) be an ergodic, probability measure preserving
dynamical system, let f : X → R such that

∫
|f |dµ =∞ and define

Snf :=
∑n

k=1 f ◦ T k−1, then we have for any positive valued
sequence (dn) and a.e. x ∈ X that

lim sup
n→∞

|Snf (x)|
dn

=∞ or lim sup
n→∞

|Snf (x)|
dn

= 0. (1)

Since
∫
gdm =∞, we are in the situation of (1).

However, by [?] we obtain for a.e. x ∈ X that

lim
n→∞

∑n
k=1 ak(x)−max1≤`≤n a`(x)

n log n
=

1
log 2

.
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Let’s look at a related continued fraction expansion:
Each x ∈ (0, 1) can be written as

x = 1−
1

c1(x)−
1

c2(x)−
1

c3(x)−
. . .

.

This continued fraction expansion is called backward or Rényi type
continued fraction, see [?].
We have cn(x) = (h ◦ T n−1

BCF )(x),

where h(x) =
⌊

1
1−x

⌋
+ 1 and TBCF = { 1

1−x } with {x} = x − bxc.
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Can we say something about
∑n

k=1 ck(x)?
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Comparing the two continued fraction transformations with each other:
Why are the second ones called “backward” continued fractions?

The regular continued fractions:
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The backward continued fractions:
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h(x) = g(1− x) + 1 and TBCF (x) = τ(1− x).
They look very similar, but they behave very differently.
In particular, τ is invariant wrt. m where dm(x) = 1

log 2(x+1)dλ(x).
TBCF is invariant wrt. µ where dµ(x) = 1

x log 2dλ(x), but
µ([0, 1]) =∞.
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The backward continued fractions:
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We are in a particular situation, we have
µ([0, 1]) =∞,∫
h dµ =∞,

let E = [1/2, 1], then µ(E ) = 1, but still
∫
E
h dµ =∞.

Can we say something in general in this situation?
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Let (X ,B, µ,T ) be a probability measure preserving dynamical
system and let f /∈ L1(µ).
Then there are a number of results using trimming, i.e. removing the
(or a number of) maximal entries to obtain a strong law, see e.g. [?],
[?], [?], [?], [?], [?] for results in the dynamicals systems context.
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Let (X ,B, µ,T ) be a conservative, infinite σ-finite measure
preserving dynamical system and let f ∈ L1(µ).
Then by the second part of Aaronson’s theorem we obtain for any
positive valued sequence (dn) and a.e. x ∈ X that

lim sup
n→∞

|Snf (x)|
dn

=∞ or lim sup
n→∞

|Snf (x)|
dn

= 0.

Adding additional summands can help:
[?] gives conditions on the system (X ,B, µ,T ) with µ infinite such
that there exists a sequence of positive numbers (dn) such that for
all non-negative f ∈ L1(µ) and a.e. x ∈ X we have

lim
N→∞

SN+m(N,x)f (x)

dN
=

∫
f dµ.

(We will have a look at the precise definition of m in the following.)
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An example of the last statement:
Let T : [0, 1]→ [0, 1] be the Farey map

T (x) =

{
x

1−x if x ∈ [0, 1/2]
1−x
x if x ∈ [1/2, 1].

It preserves the infinite invariant measure dµ(x) = 1
x log 2dx .

Setting E = [1/2, 1], then µ(E ) = 1, we denote by ϕ
E
the first

return time

ϕ
E
: E → N , ϕ

E
(x) := min

{
k ≥ 1 : T k(x) ∈ E

}
.

The first return time is finite for µ-a.e. x ∈ E , so we define the
induced map

T
E
: E → E by T

E
(x) := Tϕ

E
(x)(x)

(an ergodic measure-preserving transformation of the probability
space (E ,B|E , µ)).
ϕE ◦ T k−1

E (x) gives the kth continued fraction entry of x .
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We denote the longest excursion out of E beginning in the first
N-steps (defined for µ-a.e. x ∈ X ) by

m(N,E , x) := 1+max {k ≥ 1 : ∃ ` ∈ {1, . . . ,N + 1}
s.t. T `+j(x) 6∈ E , ∀ j = 0, . . . , k − 1

}
.

Let’s look at an example: in red: k : T k(x) ∈ E
•
0

• • • • • • •
N
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0
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• • •

Let’s look at an example: in red: k : T k(x) ∈ E
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0

• • • • • • •
N

• • •

m(N,E , x) = 4

Let’s look at another example: in red: k : T k(x) ∈ E
•
0

• • • • • • •
N
• • •

m(N,E , x) = 5

For the Farey map T and f ∈ L1(µ), we have for µ-a.e. x ∈ X

lim
N→∞

SN+m(N,E ,x)f logN

N log 2
=

∫
f dµ.

Similar statements hold for other infinite measure preserving maps.
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Back to the literature review:
If (X ,B, µ,T ) is a conservative, infinite σ-finite measure preserving
dynamical system, and f /∈ L1(µ), then a strong law of large
numbers might be possible:
The easiest case would be f ≡ C , then for every x ∈ X :

lim
N→∞

SN f (x)

N
= C .

[?] and [?] give conditions for a strong law of large numbers for more
interesting observables than f ≡ C and also other norming
sequences than (dN) = (N).
However, in all cases cosidering an infinite measure, we always
assume that

∫
E
|f | dµ <∞ if µ(E ) <∞.

Aim for today: Let’s put some light on the case µ(X ) =∞ and
there exists E with µ(E ) <∞ and

∫
E
f dµ =∞.
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Statements of results for special continued fractions

Remember the backward continued fraction transformation:

x = 1−
1

c1(x)−
1

c2(x)−
. . .

.

We have for a.e. x ∈ [0, 1] that

lim
N→∞

1
N

(
N+m(N,E ,x)∑

j=1

cj(x)−max

{
2m(N,E , x), max

1≤k≤N+m(N,E ,x)
ck(x)

})
= 3,

see [?].
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Another continued fraction expansion: Even continued fractions:

x =
1

2h1(x) +
ε1

2h2 +
ε2

2h3(x) +
. . .

, (2)

where hj ∈ N and εj ∈ {−1, 1}.
We have for a.e. x ∈ [0, 1]

lim
N→∞

1
N

[
N+m(N,E ,x)∑

j=1

2hj(x)−max

{
m(N,E , x), max

1≤k≤N+m(N,E ,x)
2hk(x)

}]
= 3,

see [?].
A similar statement could be made for the odd-odd continued fraction
expansion.
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Further (related) statements: Let (cn) again be the digits of the
backward continued fraction expansion.

Let g : N→ R≥0 such that g(n) = o(n) and g(1) = K .
Then we have for a.e. x ∈ [0, 1]

lim
N→∞

1
N

(
N∑
j=1

g(cj(x))− max
1≤k≤N

g(ck(x))

)
= K .

If additionally g(n) . n/(log log n)u with u > 1, we have for a.e.
x ∈ [0, 1]

lim
N→∞

1
N

(
N∑
j=1

g(cj(x))

)
= K .

If on the other hand g(n) & n, then one might need to deduce more
than only the largest entry and divide by another norming sequence
than N.
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The main theorem:
Let (X ,B, µ,T ) be an ergodic, conservative, σ-finite system with
µ(X ) =∞ and µ(E ) = 1.
Let g : X → R≥0 be a measurable observable and let P

E
be the partition

of E induced by T
E
. We assume that:

(i) We assume that for any sequence (φn)n∈N piecewise constant on P
E
,

the sequence (φn ◦ T n−1
E

)n≥1 is fast enough ψ-mixing.
(ii) Let A>n := {x ∈ E : ϕ

E
(x) > n}

µ(A>n) does not grow too fast, e.g. µ(A>n) = 1/n would work.
(iii) There exists a constant κ > 0 such that µ(g > n) ∼ κµ(A>n).
(iv) The function g is locally constant on P

E
and g 6∈ L1(E , µ).

(v) There exists c ∈ R such that g ≡ c on X\E .
Then, for µ-a.e. x ∈ X we have

lim
N→∞

SN+m(N,E ,x)g(x)−max1≤k≤N+m(N,E ,x)(g ◦ T k−1)(x)− c m(N,E , x)

N

= c + κ.
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Corrollary:
If additionally to the conditions of the previous theorem we have for
M,N ∈ N that

µ ({g > N} ∩ {ϕ
E
> M}) � µ (g > N)µ (ϕ

E
> M) ,

then for µ-a.e. x ∈ X

lim
N→∞

SN+m(N,E ,x)g(x)−max
{
max1≤k≤N+m(N,E ,x)(g ◦ T k−1)(x), c m(N,E , x)

}
N

= c + κ.

23 / 23



Strong limit theorems for infinite measure-preserving dynamical systems with applications to non-standard continued fractions
Further questions

1 Introduction
Regular and backward continued fractions
Some literature review

2 Statement of results
Statements of results for special continued fractions
Statement of general results

3 Further questions

24 / 23



Strong limit theorems for infinite measure-preserving dynamical systems with applications to non-standard continued fractions
Further questions

Outlook:
Is the current theorem applicable for further continued fraction
classes?
In terms of the infinite measure set, so far we only cover some cases
where the return time sets are regularly varying with index 1, a
generalization for broader classes of infinity are needed.
So far the results heavily rely on the ψ-mixing property, weakening
this assumption might only be possible if we increase m(N,E , x)
(add more digits).
A special class are α-continued fractions with α ∈ (0, 1/2).
Probably, the ψ-mixing condition does not hold for them.
It would also be interested to look at random dynamics, e.g. using
the regular and the backward cf transformation randomly.

25 / 23



Strong limit theorems for infinite measure-preserving dynamical systems with applications to non-standard continued fractions
Bibliography

Aaronson, J. (1977).

On the ergodic theory of non-integrable
functions and infinite measure spaces.
Israel J. Math., 27(2):163–173.

Aaronson, J. (1997).

An introduction to infinite ergodic theory,
volume 50 of Mathematical Surveys and
Monographs.
American Mathematical Society, Providence, RI.

Aaronson, J. and Nakada, H. (2003).

Trimmed sums for non-negative, mixing
stationary processes.
Stochastic Process. Appl., 104(2):173–192.

Aaronson, J. and Nakada, H. (2005).

On the mixing coefficients of piecewise
monotonic maps.
Israel J. Math., 148:1–10.

Bonanno, C. and S., T. I. (2022).

Almost sure asymptotic behaviour of Birkhoff
sums for infinite measure-preserving dynamical
systems.
Discrete Contin. Dyn. Syst., 42(11):5541–5576.

Bonanno, C. and S., T. I. (2021).

Almost sure limit theorems with applications to
non-regular continued fraction algorithms.
preprint: arXiv:2304.01132.

Bradley, R. C. (2005).

Basic properties of strong mixing conditions. A
survey and some open questions.

Probab. Surv., 2:107–144.

Diamond, H. G. and Vaaler, J. D. (1986).

Estimates for partial sums of continued fraction
partial quotients.
Pacific Journal of Mathematics, 122(1):73–82.

Haynes, A. (2014).

Quantitative ergodic theorems for weakly
integrable functions.
Ergodic Theory Dynam. Systems,
34(2):534–542.
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