Interval Translation Maps with Weakly Mixing Attractors

Silvia Radinger
based on a joint work with Henk Bruin

25 May 2023 at Numeration 2023 in Liège

Two-parameter family of Interval Translation Maps

 (ITMs)introduced by Bruin, Troubetzkoy in 2003

$$
T_{\alpha, \beta}(x)= \begin{cases}x+\alpha, & x \in[0,1-\alpha), \\ x+\beta, & x \in[1-\alpha, 1-\beta), \\ x-1+\beta, & x \in[1-\beta, 1]\end{cases}
$$

on the parameter space $U=\{(\alpha, \beta): 0 \leq \beta \leq \alpha \leq 1\}$.

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

Renormalization

Analyse the first return map to $[1-\alpha, 1]$:

On parameter space $U=\{(\alpha, \beta): 0 \leq \beta \leq \alpha \leq 1\}$ function G transforms $T_{\alpha, \beta}$ into $T_{\alpha^{\prime}, \beta^{\prime}}$ with

$$
\left(\alpha^{\prime}, \beta^{\prime}\right)=G(\alpha, \beta)=\left(\frac{\beta}{\alpha}, \frac{\beta-1}{\alpha}+\left\lfloor\frac{1}{\alpha}\right\rfloor\right) .
$$

Renormalization

On parameter space $U=\{(\alpha, \beta): 0 \leq \beta \leq \alpha \leq 1\}$ function G transforms $T_{\alpha, \beta}$ into $T_{\alpha^{\prime}, \beta^{\prime}}$ with

$$
\left(\alpha^{\prime}, \beta^{\prime}\right)=G(\alpha, \beta)=\left(\frac{\beta}{\alpha}, \frac{\beta-1}{\alpha}+\left\lfloor\frac{1}{\alpha}\right\rfloor\right) .
$$

Two types of parameters

- Finite Type: $T_{\alpha, \beta}$ reduces to interval exchange transformation
- Infinite Type: $\Omega:=\bigcap_{n \geq 0} \overline{T_{\alpha, \beta}^{n}([0,1])}$ is a Cantor set with $T_{\alpha, \beta}$ a minimal endomorphism.
The set of parameters (α, β) with $T_{\alpha, \beta}$ is of infinite type has Lebesgue measure zero.

S-adic Subshift

Symbolically, one renormalization step is given by the substitution

$$
\chi_{k}:\left\{\begin{array}{l}
1 \rightarrow 2 \\
2 \rightarrow 31^{k} \\
3 \rightarrow 31^{k-1}
\end{array} \quad \text { for } k=\left\lfloor\frac{1}{\alpha}\right\rfloor \in \mathbb{N}\right.
$$

with incidence matrix

$$
A_{k}=\left(\begin{array}{ccc}
0 & k & k-1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) \text { and } \operatorname{det}\left(A_{k}\right)=-1
$$

We define a S-adic subshift based on a sequence of substitutions $\chi_{k_{i}}$, $k_{i} \in \mathbb{N}$. The itinerary of the point 1 is

$$
\rho=\lim _{i \rightarrow \infty} \chi_{k_{1}} \circ \chi_{k_{2}} \circ \chi_{k_{3}} \circ \cdots \circ \chi_{k_{i}}(3) .
$$

Subshift X is the closure of $\left\{\sigma^{n}(\rho)\right\}_{n \in \mathbb{N}}$ where σ is the left-shift.

We define a S-adic subshift based on a sequence of substitutions $\chi_{k_{i}}$, $k_{i} \in \mathbb{N}$. The itinerary of the point 1 is

$$
\rho=\lim _{i \rightarrow \infty} \chi_{k_{1}} \circ \chi_{k_{2}} \circ \chi_{k_{3}} \circ \cdots \circ \chi_{k_{i}}(3) .
$$

Subshift X is the closure of $\left\{\sigma^{n}(\rho)\right\}_{n \in \mathbb{N}}$ where σ is the left-shift.

Every ITM of infinite type in this family is uniquely characterised by a sequence $\left(k_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{N}$ such that
$k_{2 i}>1$ for infinitely many $i \in \mathbb{N}$ and $k_{2 j-1}>1$ for infinitely many $j \in \mathbb{N}$.

Proposition

The S-adic subshift (X, σ), based on substitutions $\left(\chi_{k_{i}}\right)_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- aperiodic

Proposition

The S-adic subshift (X, σ), based on substitutions $\left(\chi_{k_{i}}\right)_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- aperiodic
- left-proper

Proof.

Left-proper.

$$
\chi_{k_{i}} \circ \chi_{k_{i+1}}:\left\{\begin{array}{l}
1 \rightarrow 31^{k_{i}} \\
2 \rightarrow 31^{k_{i}-1} 2^{k_{i+1}} \\
3 \rightarrow 31^{k_{i}-1} 2^{k_{i+1}-1} .
\end{array}\right.
$$

Proposition

The S -adic subshift (X, σ), based on substitutions $\left(\chi_{k_{i}}\right)_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- aperiodic
- left-proper
- combinatorially recognizable

Proof.

Combinatorial Recognizability.

For example

$$
\begin{aligned}
x & =\ldots|2| 311|31| 2|2| 311 \mid \ldots \\
& =\ldots \chi_{2}(1) \chi_{2}(2) \chi_{2}(3) \chi_{2}(1) \chi_{2}(1) \chi_{2}(2) \ldots
\end{aligned}
$$

Proposition

The S-adic subshift (X, σ), based on substitutions $\left(\chi_{k_{i}}\right)_{i \in \mathbb{N}}$ from an ITM of infinite type, is

- aperiodic
- left-proper
- combinatorially recognizable
- primitive $(\Rightarrow(X, \sigma)$ is minimal).

Proof.

Primitivity.

$$
\tilde{A}_{i}=\underbrace{A_{1} \cdots A_{1}}_{r_{i, 1} \geq 0} \cdot A_{k_{i, 1}} \cdot \underbrace{A_{1} \cdots A_{1}}_{r_{i, 2} \text { odd }} A_{k_{i, 2}} \cdots \cdots \cdot A_{k_{i, m}} \cdot \underbrace{A_{1} \cdots A_{1}}_{r_{i, m+1} \text { even }} \cdot A_{k_{i, m+1}} \cdot A_{k_{i, m+2}},
$$

is a full matrix for

- $k_{i, j} \geq 2$ for $1 \leq j \leq m+1, k_{i, m+2} \geq 1$.

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword w reappears in x with gap $\leq L|w|$.

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword w reappears in x with gap $\leq L|w|$.
\Rightarrow From linear recurrence follows unique ergodicity, no mixing, exact finite rank, ...

Linearly Recurrent Subshift

Definition

A subshift (X, σ) is linearly recurrent if there is $L \in \mathbb{N}$ such that for every $x \in X$, every subword w reappears in x with gap $\leq L|w|$.
\Rightarrow From linear recurrence follows unique ergodicity, no mixing, exact finite rank,...

Theorem

The subshift (X, σ) associated to an ITM of infinite type is linearly recurrent if and only if

- $\left(k_{i}\right)_{i \in \mathbb{N}}$ is bounded and
- the sets $\left\{i: k_{2 i}>1\right\}$ and $\left\{i: k_{2 i-1}>1\right\}$ have bounded gaps.

Proof idea: Show \exists telescoping $\left(\chi_{k_{i}}\right)_{i}$ into finitely many, left-proper substitutions with full incidence matrices.

Weakly Mixing

Definition

A system (X, T) is called weakly mixing if the Koopman operator

$$
U_{T}(f)=f \circ T
$$

has 1 as its only eigenvalue.

If an eigenfunction f is

- in L^{2}, then its eigenvalue is called measurable,
- continuous, then its eigenvalue is called continuous.

In this talk we will restrict to continuous eigenvalues.

Eigenvalue Conditions - Periodic Case

Theorem (Host in 1986)

For a primitive substitution system a sufficient condition to have an eigenvalue $e^{2 \pi i t}$ for some $t \in(0,1)$ is

$$
\sum_{n=1}^{\infty}\left\|\vec{t} A_{k_{1}} \cdots A_{k_{n}}\right\|<\infty, \quad \vec{t}=(t, t, t)
$$

where $\|x\|$ is the distance of a vector to the nearest integer lattice point.

This condition was later expanded to hold for linearly recurrent S-adic shifts and their continuous eigenvalues.

Lyapunov Exponents

Proposition

For every ITM of infinite type with sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$, the infinite matrix multiplication $A_{k_{1}} \cdot A_{k_{2}} \cdots$ has two positive and one negative Lyapunov exponent.

There are independent vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3} \in \mathbb{R}^{3}$,

$$
0<\lambda_{3}<1<\left|\lambda_{2}\right|<\lambda_{1}
$$

and $C>0$ such that for all n,

$$
\begin{aligned}
& \left\|\vec{v}_{i} A_{k_{1}} \cdot A_{k_{2}} \cdots A_{k_{n}}\right\| \geq C\left|\lambda_{i}\right|^{n} \text { for } i \in\{1,2\} \text { and } \\
& \left\|\vec{v}_{3} A_{k_{1}} \cdot A_{k_{2}} \cdots A_{k_{n}}\right\| \leq C^{-1} \lambda_{3}^{n} .
\end{aligned}
$$

Proof.

- A_{k} preserves positive octant \mathcal{Q}^{+}. By primitivity, \tilde{A}_{i} is a positive integer matrix, thus $\log \left(\lambda_{1}\right)>0$ and unstable space in interior of \mathcal{Q}^{+}.

Proof.

- A_{k} preserves positive octant \mathcal{Q}^{+}. By primitivity, \tilde{A}_{i} is a positive integer matrix, thus $\log \left(\lambda_{1}\right)>0$ and unstable space in interior of \mathcal{Q}^{+}.
- A_{k}^{-1} preserves octant $\mathcal{Q}^{-}=\left\{x_{1}, x_{2} \geq 0 \geq x_{3}\right\}$, change coordinates to \mathcal{Q}^{+}

$$
B_{k}=U A_{k}^{-1} U^{-1}=\left(\begin{array}{ccc}
0 & 1 & k-1 \\
1 & 0 & 0 \\
0 & 1 & k
\end{array}\right)
$$

$\Rightarrow \log \left(\lambda_{3}\right)<0$.

Proof.

- A_{k} preserves positive octant \mathcal{Q}^{+}.

By primitivity, \tilde{A}_{i} is a positive integer matrix, thus $\log \left(\lambda_{1}\right)>0$ and unstable space in interior of \mathcal{Q}^{+}.

- A_{k}^{-1} preserves octant $\mathcal{Q}^{-}=\left\{x_{1}, x_{2} \geq 0 \geq x_{3}\right\}$, change coordinates to \mathcal{Q}^{+}

$$
B_{k}=U A_{k}^{-1} U^{-1}=\left(\begin{array}{ccc}
0 & 1 & k-1 \\
1 & 0 & 0 \\
0 & 1 & k
\end{array}\right)
$$

$\Rightarrow \log \left(\lambda_{3}\right)<0$.

- By

$$
\log \left(\lambda_{1}\right)+\log \left(\lambda_{2}\right)+\log \left(\lambda_{3}\right)=0
$$

if we can show $\log \left(\lambda_{1}\right)+\log \left(\lambda_{3}\right)<0$, then $\log \left(\lambda_{2}\right)>0$.

Periodic Case

Theorem

Every ITM of infinite type with (pre-)periodic sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ is weakly mixing.

Periodic Case

Theorem

Every ITM of infinite type with (pre-)periodic sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ is weakly mixing.

Proof.

Define $A^{n}=A_{k_{1}} \cdots A_{k_{n}}>0$ with period n.

- A^{n} is irreducible matrix, eigenvalues are cubic numbers.

Periodic Case

Theorem

Every ITM of infinite type with (pre-)periodic sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ is weakly mixing.

Proof.

Define $A^{n}=A_{k_{1}} \cdots A_{k_{n}}>0$ with period n.

- A^{n} is irreducible matrix, eigenvalues are cubic numbers.
- Stable space is one-dimensional in direction $E_{3}=(u, v,-1)$.
- For $t(1,1,1)$ to be in integer translation of E_{3} :

$$
\left(\begin{array}{l}
t \\
t \\
t
\end{array}\right)+s\left(\begin{array}{c}
u \\
v \\
-1
\end{array}\right)=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \text { for } p, q, r \in \mathbb{Z} \text { and reals } u, v>0 .
$$

Periodic Case

Theorem

Every ITM of infinite type with (pre-)periodic sequence $\left(k_{i}\right)_{i \in \mathbb{N}}$ is weakly mixing.

Proof.

Define $A^{n}=A_{k_{1}} \cdots A_{k_{n}}>0$ with period n.

- A^{n} is irreducible matrix, eigenvalues are cubic numbers.
- Stable space is one-dimensional in direction $E_{3}=(u, v,-1)$.
- For $t(1,1,1)$ to be in integer translation of E_{3} :

$$
\left(\begin{array}{c}
t \\
t \\
t
\end{array}\right)+s\left(\begin{array}{c}
u \\
v \\
-1
\end{array}\right)=\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right) \text { for } p, q, r \in \mathbb{Z} \text { and reals } u, v>0 .
$$

- Find λ_{3} is a quadratic number, a contradiction.

Eigenvalue Conditions - General Case

Theorem (Durand, Frank, Maass in 2019)

Let (X, σ) be a subshift based on a proper Bratteli diagram. Then $e^{2 \pi i t}$ is a continuous eigenvalue if and only if

$$
\sum_{n=1}^{\infty} \max _{x \in X}\| \|\left\langle s_{n}(x), \vec{t} \tilde{A}_{k_{1}} \cdots \tilde{A}_{k_{n}}\right\rangle \|<\infty, \quad \vec{t}=(t, t, t)
$$

where

$$
\left(s_{n}(x)\right)_{v}=\sharp\left\{e \in E_{n+1}: e \succ x_{n+1}, s(e)=v\right\},
$$

the vector $s_{n}(x)$ counts the number of incoming edges that are higher in the order than edge x_{n+1} in the path x.

Direction of the Stable Space

Follow $(u, v, 1-(u+v)) B_{k}$ normalised to unit length, indicate the first two coordinates

$$
\begin{equation*}
H_{k}:(u, v)=\frac{1}{D_{k}}(v, 1-v) \quad \text { for } \quad D_{k}=k(1-v)+1-u \tag{1}
\end{equation*}
$$

Direction of the Stable Space

Follow $(u, v, 1-(u+v)) B_{k}$ normalised to unit length, indicate the first two coordinates

$$
\begin{equation*}
H_{k}:(u, v)=\frac{1}{D_{k}}(v, 1-v) \quad \text { for } \quad D_{k}=k(1-v)+1-u \tag{1}
\end{equation*}
$$

Figure: The simplex Δ and image $\Delta_{k}=H_{k}(\Delta)$ (left) and further images $H_{k_{1}}\left(H_{k_{2}}(\Delta)\right)$ (right).

Direction of the Stable Space

To have $t(1,1,1)$ in stable direction

$$
(u, v) \in \ell_{p, q, r}=\{(u, v) \in \Delta: u(q-r)=v(p-r)+q-p\} .
$$

Results for Continuous Eigenvalues

Theorem
 Let $T_{(\alpha, \beta)}$ be a ITM of infinite type with the stable space W^{s}. If $\vec{t} \notin W^{s}$, then $e^{2 \pi i t}$ is not a continuous eigenvalue of the Koopman operator.

Results for Continuous Eigenvalues

Theorem

Let $T_{(\alpha, \beta)}$ be a ITM of infinite type with the stable space W^{s}. If $\vec{t} \notin W^{s}$, then $e^{2 \pi i t}$ is not a continuous eigenvalue of the Koopman operator.

Theorem

There exist parameters (α, β) such that $\vec{t} \in W^{s}$ and $e^{2 \pi i t}$ is not a continuous eigenvalue of the Koopman operator.

居 V．Berthé，P．Cecchi Bernales，Reem Yassawi，Coboundaries and eigenvalues of finitary S－adic systems，Preprint 2022， arXiv：2202．07270
目 X．Bressaud，F．Durand，A．Maass，Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical Cantor systems．Journal of the London Mathematical Society 72 （2005）799－816．
T H．Bruin，S．Troubetzkoy，The Gauss map on a class of interval translation mappings．Isr．J．Math． 137 （2003）125－148．
囯 F．Durand，A．Frank，A．Maass，Eigenvalues of minimal Cantor systems．J．Eur．Math．Soc． 21 （2019）727－775．
R．Host，Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable．Ergod．Th．\＆Dynam．Sys． 6 （1986）529－540．

