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Université de Lorraine

Numeration 2023,
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Introduction
Exponential diophantine equations

Exponential diophantine equations
Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

Ramanujan–Nagell equation: 2n − 7 = x2.
→ Ramanujan (1913) conjectured that solutions are n = 3, 4, 5, 7, 15.
→ Nagell (1948) proved this conjecture.
→ Apéry (1960) proved that the equation 2n − D = x2 has at most two

solutions (D > 0, D ̸= 7).
Generalized Ramanujan–Nagell equation: yn − D = x2, D ̸= 0.

→ Beukers (2002): At most four solutions for D < 0.
→ Bugeaud-Mignotte-Siksek (2006): All solutions for 1 ≤ D ≤ 100.

Catalan’s conjecture (1844): x a − yb = 1, a, b > 1, x , y > 0
=⇒ x = b = 3, y = a = 2.

→ Mihăilescu (2003) proved this conjecture.

· · ·
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Introduction
Sum of digits

Let k ≥ 2

n2 = 2ak−1 + · · · + 2a1 + 1, 0 < a1 < · · · < ak−1. (1)

s(n) = sum of digits function in base 2, the Hamming weight.
→ n satisfies (1) if and only if s(n2) = k and n is odd.

a, b positive integers.
Subadditive: s(a + b) ≤ s(a) + s(b).

Submultiplicative: s(ab) ≤ s(a)s(b).

2-additive: If b < 2r , s(a2r + b) = s(a) + s(b).

(a)2 0 · · · 0 0 · · · 0 = a2r

+ 0 · · · 0 (b)2 = b
(a)2 0 · · · 0 (b)2 = a2r + b.

The sum is non-interfering: no interaction between the digits of a and b.
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Introduction
Sum of digits

Expected values:

1
N

∑
1≤n≤N

s(n) = 1
2 log2(N) + O(1),

1
N

∑
1≤n≤N

s(n2) = log2(N) + O(1).

Stolarsky (1978):
lim inf s(n2)

s(n) = 0,

lim sup s(n2)
s(n) = ∞.

Madritsch, Stoll (2014):
s(n2)
s(n) is dense in R+.

Let k ≥ 1, we study the following equation

s(n) = s(n2) = k, n odd. (2)

→ Exceptionnal set of integers.
91 = 1 + 2 + 8 + 16 + 64, (91)2 = 1011011, s(91) = 5.
912 = 1 + 8 + 16 + 64 + 213, (912)2 = 10000001011001, s(912) = 5.

Q: Are there finitely or infinitely many solutions for (2) ?

Pierre Popoli On the binary digits of n and n2 5/25



Introduction
Sum of digits

Expected values:

1
N

∑
1≤n≤N

s(n) = 1
2 log2(N) + O(1),

1
N

∑
1≤n≤N

s(n2) = log2(N) + O(1).

Stolarsky (1978):
lim inf s(n2)

s(n) = 0,

lim sup s(n2)
s(n) = ∞.

Madritsch, Stoll (2014):
s(n2)
s(n) is dense in R+.

Let k ≥ 1, we study the following equation

s(n) = s(n2) = k, n odd. (2)

→ Exceptionnal set of integers.
91 = 1 + 2 + 8 + 16 + 64, (91)2 = 1011011, s(91) = 5.
912 = 1 + 8 + 16 + 64 + 213, (912)2 = 10000001011001, s(912) = 5.

Q: Are there finitely or infinitely many solutions for (2) ?

Pierre Popoli On the binary digits of n and n2 5/25



Introduction
Sum of digits

Expected values:

1
N

∑
1≤n≤N

s(n) = 1
2 log2(N) + O(1),

1
N

∑
1≤n≤N

s(n2) = log2(N) + O(1).

Stolarsky (1978):
lim inf s(n2)

s(n) = 0,

lim sup s(n2)
s(n) = ∞.

Madritsch, Stoll (2014):
s(n2)
s(n) is dense in R+.

Let k ≥ 1, we study the following equation

s(n) = s(n2) = k, n odd. (2)

→ Exceptionnal set of integers.

91 = 1 + 2 + 8 + 16 + 64, (91)2 = 1011011, s(91) = 5.
912 = 1 + 8 + 16 + 64 + 213, (912)2 = 10000001011001, s(912) = 5.

Q: Are there finitely or infinitely many solutions for (2) ?

Pierre Popoli On the binary digits of n and n2 5/25



Introduction
Sum of digits

Expected values:

1
N

∑
1≤n≤N

s(n) = 1
2 log2(N) + O(1),

1
N

∑
1≤n≤N

s(n2) = log2(N) + O(1).

Stolarsky (1978):
lim inf s(n2)

s(n) = 0,

lim sup s(n2)
s(n) = ∞.

Madritsch, Stoll (2014):
s(n2)
s(n) is dense in R+.

Let k ≥ 1, we study the following equation

s(n) = s(n2) = k, n odd. (2)

→ Exceptionnal set of integers.
91 = 1 + 2 + 8 + 16 + 64, (91)2 = 1011011, s(91) = 5.
912 = 1 + 8 + 16 + 64 + 213, (912)2 = 10000001011001, s(912) = 5.

Q: Are there finitely or infinitely many solutions for (2) ?

Pierre Popoli On the binary digits of n and n2 5/25



Introduction
Sum of digits

Expected values:

1
N

∑
1≤n≤N

s(n) = 1
2 log2(N) + O(1),

1
N

∑
1≤n≤N

s(n2) = log2(N) + O(1).

Stolarsky (1978):
lim inf s(n2)

s(n) = 0,

lim sup s(n2)
s(n) = ∞.

Madritsch, Stoll (2014):
s(n2)
s(n) is dense in R+.

Let k ≥ 1, we study the following equation

s(n) = s(n2) = k, n odd. (2)

→ Exceptionnal set of integers.
91 = 1 + 2 + 8 + 16 + 64, (91)2 = 1011011, s(91) = 5.
912 = 1 + 8 + 16 + 64 + 213, (912)2 = 10000001011001, s(912) = 5.

Q: Are there finitely or infinitely many solutions for (2) ?

Pierre Popoli On the binary digits of n and n2 5/25



Introduction
Previous result

s(n) = s(n2) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)
If 1 ≤ k ≤ 8, (2) has finitely many solutions.
If k = 12, 13 or k ≥ 16, (2) has infinitely many solutions.

Proof by an algorithm that computes all the solutions for the first case.
Example: For k = 5, the set of solutions is {31, 79, 91, 157, 279}.

Give an infinite family of solutions for each k in the second case:

s(n) = s(n2) = 12, for all n = 111 · 2t + 111, with t ≥ 15.

(111)2 0 · · · 0 (111)2 = (n)2
(1112)2 0 · · · 0 (1112)2 00 · · · 0 (1112)2 = (n2)2

And s(111) = 6, s(1112) = 4.
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Introduction
Our result

s(n) = s(n2) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)
If 1 ≤ k ≤ 8, (2) has finitely many solutions.
If k = 12, 13 or k ≥ 16, (2) has infinitely many solutions.

Q: What about 9 ≤ k ≤ 11 and k = 14, 15 ?

r Previous algorithm is no longer adapted.r No infinite family appears clearly.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)
If 9 ≤ k ≤ 11, (2) has finitely many solutions.

Proof: new combinatorial tools and algorithms.
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Interference graph
m = 1

Write n = 2ℓm xm + · · · + 2ℓ1 x1 + x0 such that

(n)2 = (xm)20 · · · 0(xm−1)2 · · · (x1)20 · · · 0(x0)2, ηi ≥ 0.

→ Not unique decomposition.

r For m = 1, n2 = 22ℓ1 x2
1 + 2ℓ1+1x1x0 + x2

0 .
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Interference graph
m = 1

Write n = 2ℓm xm + · · · + 2ℓ1 x1 + x0 such that
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|x | denotes the binary length of x .
If ℓ1 + 1 > 2|x0|, no interference between 2ℓ1+1x1x0 and x2

0 .
If 2ℓ1 > ℓ1 + 1 + |x1| + |x0|, no interference between x2

1 and 2ℓ1+1x1x0.

In this case, n2 is composed of three independent blocks.
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Interference graph
m = 2

r For m = 2, we have

n = 2ℓ2 x2 + 2ℓ1 x1 + x0.

n2 = 22ℓ2 x2
2 + 2ℓ2+ℓ1+1x2x1 + 22ℓ1 x2

1 + 2ℓ2+1x2x0

potential interference

+2ℓ1+1x1x0 + x2
0 .

Potential interference even if ℓi large enough.

(x2
0 )2

(x1x0)2
ℓ1 + 1

(x2x0)2
ℓ2 + 1

(x2
1 )2

2ℓ1

(x2x1)2
ℓ2 + ℓ1 + 1

(x2
2 )2

2ℓ2
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Interference graph
Graphs for m = 1 and m = 2

x2
1 x1x0 x2

0

Figure: Interference graph for m = 1.

x2
2 x2x1 x2x0 x1x0 x2

0

x2
1

Figure: Interference graph for m = 2.
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Interference graph
m = 3

r For m = 3, we have

n = 2ℓ3 x3 + 2ℓ2 x2 + 2ℓ1 x1 + x0.

n2 = 22ℓ3 x2
3 + 2ℓ3+ℓ2+1x3x2 + · · · + 2ℓ1+1x1x0 + x2

0 .

9 blocks and 5 potential interferences if ℓi large enough.

x2
3 x3x2 x3x1 x3x0 x2x0 x1x0 x2

0

x2
2 x2x1 x2

1

Figure: Interference graph for m = 3.
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Interference graph
Factorization lemma

Factorization lemma
For k ≥ 1, there exists Nk such that every odd integer n ≥ Nk with
s(n) = s(n2) = k can be factorized

(n)2 = (xm)20ηm (xm−1)2 · · · (x1)20η1 (x0)2,

with min(ηi) > 2 max(|xi |) + k2.

Useful to
prove that there is finitely many solutions.
find easily infinite families of solutions.

The bound Nk is very large: N9 = 2611 669.
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Interference graph
Distribution for 11 bits: Example 1

Suppose n is such that s(n) = s(n2) = 11 and satisfies the factorization lemma.
Distribute 11 1-bits in the 3 independent blocks. For example:

4 3 4

x2
1 x1x0 x2

0


s(x1) + s(x0) = 11,
s(x2

1 ) = 4,
s(x1x0) = 3,
s(x2

0 ) = 4.

Lemma (Kaneko, Stoll, 2022)
Let a, b be odd integers, s(a) = ℓ, s(b) = m ≥ 3.

s(ab) = 2 =⇒ ab < 22ℓm−4.

s(ab) = 3 =⇒ ab < 24ℓm−13.

Computer research is sufficient: ab < 2107.
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Interference graph
Distribution for 11 bits: Example 2

Suppose n is such that s(n) = s(n2) = 11 and satisfies the factorization lemma.
Distribute 11 1-bits in the 3 independent blocks. For example:

3 4 4

x2
1 x1x0 x2

0


s(x1) + s(x0) = 11,
s(x2

1 ) = 3,
s(x1x0) = 4,
s(x2

0 ) = 4,

Computer research is no longer possible for s(x1x0) = 4 since

Lemma (Kaneko, Stoll, 2022)
For all integers L ≥ 1 there exist integers ℓ, m ≥ L such that there are infinitely
many pairs (a, b) of positive odd integers with

s(a) = ℓ, s(b) = m, s(ab) = 4.
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Few binary digits
Results

Ek :=
{

n ∈ N : s(n2) = k, n odd
}

.
k Ek

1 {1}
2 {3}

3 {7, 23} ∪ F , Szalay (2002).
F infinite family. for all n ∈ F , s(n) = 2.

→ Beukers result on the RN equation.
4 Finite set. Bennett, Bugeaud, Mignotte (2012).

→ Linear forms in logarithms.
{13, 15, 47, 111} Conjecture (2012), still open.

5 F1 ∪ F2 ∪ F3 ∪ E ′
5, Aloui, Jamet, Kaneko, Kopecki, P., Stoll (2023)

Fi infinite families, for all n ∈ Fi , s(n) = 3.
E ′

5 finite set. → Combinatorial tools.
E ′

5 = {29, . . . , 5793}. Conjecture (2023)
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4

x2
1 x1x0 x2

0


s(x1) + s(x0) = 11,
s(x2

1 ) = 3,
s(x1x0) = 4,
s(x2

0 ) = 4.

Problem: All solutions of s(x2
0 ) = 4 are not known.

But, we only need integers of E4 with bounded sum of digits.

Ek,λ :=
{

n ∈ N : s(n2) = k, s(n) = λ, n odd
}

, Ek =
⋃

λ≥1 Ek,λ.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)⋃
1≤λ≤17

E4,λ = {13, 15, 47, 111}.

Proof: By an algorithm that constructs all possible solutions for a given weight.
Supports the conjecture E4 = {13, 15, 47, 111} since s(111) = 6.
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4

x2
1 x1x0 x2

0


s(x1) + s(x0) = 11,
s(x2

1 ) = 3,
s(x1x0) = 4,
s(x2

0 ) = 4.

=⇒


s(x0) + s(x1) = 11
x1 ∈ {7, 23}, or x1 = 2ℓ + 1, ℓ ≥ 2.
s(x1x0) = 4,
x0 ∈ {13, 15, 47, 111}.

Then s(x0) + s(x1) ≤ 4 + 6 < 11 =⇒ no solution for this distribution of digits.
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Few binary digits
Distribution for 11 bits: Example 3

2 4 5

x2
1 x1x0 x2

0


s(x1) + s(x0) = 11,
s(x2

1 ) = 2,
s(x1x0) = 4,
s(x2

0 ) = 5.

Same problem for solutions of s(x2
0 ) = 5.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)⋃
4≤λ≤15

E5,λ = {29, 31, 51, 79, 91, 95, 157, 223, 279, 479, 727, 1471, 5793}.

→ This set is the conjectured set for E ′
5.

=⇒


s(x0) + s(x1) = 11,
x1 = 3,
s(x1x0) = 4,
x0 ∈ {29, 31, . . . , 1471, 5793}.

=⇒ s(x0) = 9 and x0 = 1471.

Since s(3 · 1471) = 7 > 4, there is no solution for this distribution of digits.
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Interference graph
Sketch of proof

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)
If 9 ≤ k ≤ 11, (2) has finitely many solutions.

Proofr Fix k and consider n that satisfies the factorization lemma for some m ≤ k.r Finite number of distribution of digits for each m.r Prove that all of them leads to a contradiction.
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Algorithm
Algorithm max-integer 1/2

Suppose that n = 1 + 2ℓy , y odd, ℓ ≥ 1, such that s(n2) = 4.

s(1 + 2ℓ+1y + 22ℓy 2) = 4,

s(y + 2ℓ−1y 2) = 3.

For odd integers a, b,

a ≡ b (mod 2λ) =⇒ a2 ≡ b2 (mod 2λ+1).
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Algorithm
Algorithm max-integer 2/2

Start from a candidate y and extend y on the left by
a 1: finite number of extension since s(y) ≤ k − 1 by hypothesis.

a 0: not a too large block of consecutive 0, otherwise too many digits in
the sum.

=⇒ Finite number of possible extensions.

If the algorithm ends, it gives all solutions to s(n2) = 4 and s(n) = k.

k Computation time
15 1 sec
16 102 sec
17 2h50 mn

⋃
1≤λ≤17

E4,λ = {13, 15, 47, 111}.

We also have⋃
4≤λ≤15

E5,λ = {29, 31, 51, 79, 91, 95, 157, 223, 279, 479, 727, 1471, 5793}.
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Open questions
Remaining cases of (2)

s(n) = s(n2) = k, n odd. (2)

k 1–8 9–11 12–13 14–15 ≥16
Solutions < ∞ < ∞ ∞ ? ∞

“Natural” conjecture
For k = 14, 15, (2) has infinitely many solutions.

→ Global research of every odd integer n such that s(n) = s(n2) = k, n ≤ 280.
Number of integers to check:

( 79
k−1

)
very large.

Parallelize the program.
Set up the first four nonzero bits of n:

n = 1 + 2a + 2b + 2c + y , 1 ≤ a < b < c, 2c < y ≤ 280.

Number of integers to check:
(79−c

k−4

)
smaller but large number of cases.
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Open questions
Remaining cases of (2)

s(n) = s(n2) = k, n odd. (2)

k 1–8 9–11 12–13 14–15 ≥16
Solutions < ∞ < ∞ ∞ ? ∞

→ Global research of every odd integer n such that s(n) = s(n2) = k, n ≤ 280.r For k = 11, the largest solution is n = 35463511416833 of binary length 46.r For k = 14, 15, we have solutions of binary length 80, for example:
n = 605643510452789079965697 satisfies s(n) = s(n2) = 14.
n = 605642350760526229274625 satisfies s(n) = s(n2) = 15.

But no obvious infinite family.

Conjecture
For k = 14, 15, (2) has finitely many solutions.

Thank you for your attention !
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