On the binary digits of n and n^{2}

Pierre Popoli
joint work with Aloui, Jamet, Kaneko, Kopecki and Stoll
Université de Lorraine
Numeration 2023,
Liège, May 22-26, 2023

(1) IntroductionInterference graphFew binary digitsAlgorithm
(5) Open questions

Exponential diophantine equations

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

Exponential diophantine equations

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

- Ramanujan-Nagell equation: $2^{n}-7=x^{2}$.
\rightarrow Ramanujan (1913) conjectured that solutions are $n=3,4,5,7,15$.
\rightarrow Nagell (1948) proved this conjecture.

Exponential diophantine equations

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

- Ramanujan-Nagell equation: $2^{n}-7=x^{2}$.
\rightarrow Ramanujan (1913) conjectured that solutions are $n=3,4,5,7,15$.
\rightarrow Nagell (1948) proved this conjecture.
\rightarrow Apéry (1960) proved that the equation $2^{n}-D=x^{2}$ has at most two solutions $(D>0, D \neq 7)$.

Exponential diophantine equations

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

- Ramanujan-Nagell equation: $2^{n}-7=x^{2}$.
\rightarrow Ramanujan (1913) conjectured that solutions are $n=3,4,5,7,15$.
\rightarrow Nagell (1948) proved this conjecture.
\rightarrow Apéry (1960) proved that the equation $2^{n}-D=x^{2}$ has at most two solutions ($D>0, D \neq 7$).
- Generalized Ramanujan-Nagell equation: $y^{n}-D=x^{2}, D \neq 0$.
\rightarrow Beukers (2002): At most four solutions for $D<0$.
\rightarrow Bugeaud-Mignotte-Siksek (2006): All solutions for $1 \leq D \leq 100$.

Exponential diophantine equations

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

- Ramanujan-Nagell equation: $2^{n}-7=x^{2}$.
\rightarrow Ramanujan (1913) conjectured that solutions are $n=3,4,5,7,15$.
\rightarrow Nagell (1948) proved this conjecture.
\rightarrow Apéry (1960) proved that the equation $2^{n}-D=x^{2}$ has at most two solutions ($D>0, D \neq 7$).
- Generalized Ramanujan-Nagell equation: $y^{n}-D=x^{2}, D \neq 0$.
\rightarrow Beukers (2002): At most four solutions for $D<0$.
\rightarrow Bugeaud-Mignotte-Siksek (2006): All solutions for $1 \leq D \leq 100$.
- Catalan's conjecture (1844): $x^{a}-y^{b}=1, a, b>1, x, y>0$

$$
\Longrightarrow x=b=3, y=a=2
$$

\rightarrow Mihăilescu (2003) proved this conjecture.

Sum of digits

Let $k \geq 2$

$$
\begin{equation*}
n^{2}=2^{a_{k-1}}+\cdots+2^{a_{1}}+1, \quad 0<a_{1}<\cdots<a_{k-1} \tag{1}
\end{equation*}
$$

Let $k \geq 2$

$$
\begin{equation*}
n^{2}=2^{a_{k-1}}+\cdots+2^{a_{1}}+1, \quad 0<a_{1}<\cdots<a_{k-1} \tag{1}
\end{equation*}
$$

$s(n)=$ sum of digits function in base 2, the Hamming weight.
$\rightarrow n$ satisfies (1) if and only if $s\left(n^{2}\right)=k$ and n is odd.

Let $k \geq 2$

$$
\begin{equation*}
n^{2}=2^{a_{k-1}}+\cdots+2^{a_{1}}+1, \quad 0<a_{1}<\cdots<a_{k-1} \tag{1}
\end{equation*}
$$

$s(n)=$ sum of digits function in base 2, the Hamming weight.
$\rightarrow n$ satisfies (1) if and only if $s\left(n^{2}\right)=k$ and n is odd.
a, b positive integers.

- Subadditive: $s(a+b) \leq s(a)+s(b)$.
- Submultiplicative: $s(a b) \leq s(a) s(b)$.
- 2-additive: If $b<2^{r}, s\left(a 2^{r}+b\right)=s(a)+s(b)$.

$$
\begin{array}{rlll}
(a)_{2} & 0 \cdots 0 & 0 \cdots 0 & =a 2^{r} \\
+\quad & 0 \cdots 0 & (b)_{2} & =b \\
\hline(a)_{2} & 0 \cdots 0 & (b)_{2} & =a 2^{r}+b
\end{array}
$$

The sum is non-interfering: no interaction between the digits of a and b.

Expected values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{1 \leq n \leq N} s(n)=\frac{1}{2} \log _{2}(N)+O(1) \\
& \frac{1}{N} \sum_{1 \leq n \leq N} s\left(n^{2}\right)=\log _{2}(N)+O(1)
\end{aligned}
$$

Expected values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{1 \leq n \leq N} s(n)=\frac{1}{2} \log _{2}(N)+O(1) \\
& \frac{1}{N} \sum_{1 \leq n \leq N} s\left(n^{2}\right)=\log _{2}(N)+O(1)
\end{aligned}
$$

- Stolarsky (1978):
$\lim \inf \frac{s\left(n^{2}\right)}{s(n)}=0$, $\lim \sup \frac{s\left(n^{2}\right)}{s(n)}=\infty$.
- Madritsch, Stoll (2014): $\frac{s\left(n^{2}\right)}{s(n)}$ is dense in \mathbb{R}^{+}.

Expected values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{1 \leq n \leq N} s(n)=\frac{1}{2} \log _{2}(N)+O(1) \\
& \frac{1}{N} \sum_{1 \leq n \leq N} s\left(n^{2}\right)=\log _{2}(N)+O(1)
\end{aligned}
$$

- Stolarsky (1978):

$$
\begin{aligned}
& \lim \inf \frac{s\left(n^{2}\right)}{s(n)}=0 \\
& \lim \sup \frac{s\left(n^{2}\right)}{s(n)}=\infty
\end{aligned}
$$

- Madritsch, Stoll (2014): $\frac{s\left(n^{2}\right)}{s(n)}$ is dense in \mathbb{R}^{+}.

Let $k \geq 1$, we study the following equation

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

\rightarrow Exceptionnal set of integers.

Expected values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{1 \leq n \leq N} s(n)=\frac{1}{2} \log _{2}(N)+O(1) \\
& \frac{1}{N} \sum_{1 \leq n \leq N} s\left(n^{2}\right)=\log _{2}(N)+O(1)
\end{aligned}
$$

- Stolarsky (1978):

$$
\begin{aligned}
& \lim \inf \frac{s\left(n^{2}\right)}{s(n)}=0 \\
& \lim \sup \frac{s\left(n^{2}\right)}{s(n)}=\infty
\end{aligned}
$$

- Madritsch, Stoll (2014): $\frac{s\left(n^{2}\right)}{s(n)}$ is dense in \mathbb{R}^{+}.

Let $k \geq 1$, we study the following equation

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

\rightarrow Exceptionnal set of integers.
$91=1+2+8+16+64$,
$(91)_{2}=1011011$,
$s(91)=5$.
$91^{2}=1+8+16+64+2^{13}$,
$\left(91^{2}\right)_{2}=10000001011001$,
$s\left(91^{2}\right)=5$.

Expected values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{1 \leq n \leq N} s(n)=\frac{1}{2} \log _{2}(N)+O(1) \\
& \frac{1}{N} \sum_{1 \leq n \leq N} s\left(n^{2}\right)=\log _{2}(N)+O(1)
\end{aligned}
$$

- Stolarsky (1978):

$$
\begin{aligned}
& \lim \inf \frac{s\left(n^{2}\right)}{s(n)}=0 \\
& \lim \sup \frac{s\left(n^{2}\right)}{s(n)}=\infty
\end{aligned}
$$

- Madritsch, Stoll (2014): $\frac{s\left(n^{2}\right)}{s(n)}$ is dense in \mathbb{R}^{+}.

Let $k \geq 1$, we study the following equation

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

\rightarrow Exceptionnal set of integers.

$$
\begin{array}{lll}
91=1+2+8+16+64, & (91)_{2}=1011011, & s(91)=5 \\
91^{2}=1+8+16+64+2^{13}, & \left(91^{2}\right)_{2}=10000001011001, & s\left(91^{2}\right)=5
\end{array}
$$

Q: Are there finitely or infinitely many solutions for (2) ?

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8$, (2) has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8,(2)$ has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.
- Proof by an algorithm that computes all the solutions for the first case.

Example: For $k=5$, the set of solutions is $\{31,79,91,157,279\}$.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8,(2)$ has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.
- Proof by an algorithm that computes all the solutions for the first case.

Example: For $k=5$, the set of solutions is $\{31,79,91,157,279\}$.

- Give an infinite family of solutions for each k in the second case:

$$
\left.\begin{array}{l}
s(n)=s\left(n^{2}\right)=12, \text { for all } n=111 \cdot 2^{t}+111, \text { with } t \geq 15 . \\
\\
\\
\\
\left(111^{2}\right)_{2}
\end{array} \quad 0 \cdots 0 \quad(111)_{2} \quad 0 \cdots 0 \quad(111)_{2} \quad=(n)_{2}\right)
$$

And $s(111)=6, s\left(111^{2}\right)=4$.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8$, (2) has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.

Q: What about $9 \leq k \leq 11$ and $k=14,15$?

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8$, (2) has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.

Q: What about $9 \leq k \leq 11$ and $k=14,15$?

- Previous algorithm is no longer adapted.
- No infinite family appears clearly.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

Theorem (Hare, Laishram, Stoll, 2011)

- If $1 \leq k \leq 8$, (2) has finitely many solutions.
- If $k=12,13$ or $k \geq 16$, (2) has infinitely many solutions.

Q: What about $9 \leq k \leq 11$ and $k=14,15$?

- Previous algorithm is no longer adapted.
- No infinite family appears clearly.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)
If $9 \leq k \leq 11$, (2) has finitely many solutions.
Proof: new combinatorial tools and algorithms.
(2) Interference graph
(3) Few binary digits
4. Algorithm
(5) Open questions

Interference graph

$m=1$

Write $n=2^{\ell_{m}} x_{m}+\cdots+2^{\ell_{1}} x_{1}+x_{0}$ such that

$$
(n)_{2}=\left(x_{m}\right)_{2} 0 \cdots 0\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0 \cdots 0\left(x_{0}\right)_{2}, \eta_{i} \geq 0 .
$$

\rightarrow Not unique decomposition.

Interference graph

$m=1$

Write $n=2^{\ell_{m}} x_{m}+\cdots+2^{\ell_{1}} x_{1}+x_{0}$ such that

$$
(n)_{2}=\left(x_{m}\right)_{2} 0 \cdots 0\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0 \cdots 0\left(x_{0}\right)_{2}, \eta_{i} \geq 0 .
$$

\rightarrow Not unique decomposition.

- For $m=1, n^{2}=2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2}$.

$$
\left(x_{0}^{2}\right)_{2}
$$

Interference graph

Write $n=2^{\ell_{m}} x_{m}+\cdots+2^{\ell_{1}} x_{1}+x_{0}$ such that

$$
(n)_{2}=\left(x_{m}\right)_{2} 0 \cdots 0\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0 \cdots 0\left(x_{0}\right)_{2}, \eta_{i} \geq 0
$$

\rightarrow Not unique decomposition.

- For $m=1, n^{2}=2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2}$.

$$
\left(x_{0}^{2}\right)_{2}
$$

$|x|$ denotes the binary length of x.
If $\ell_{1}+1>2\left|x_{0}\right|$, no interference between $2^{\ell_{1}+1} x_{1} x_{0}$ and x_{0}^{2}.

Interference graph

Write $n=2^{\ell_{m}} x_{m}+\cdots+2^{\ell_{1}} x_{1}+x_{0}$ such that

$$
(n)_{2}=\left(x_{m}\right)_{2} 0 \cdots 0\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0 \cdots 0\left(x_{0}\right)_{2}, \eta_{i} \geq 0
$$

\rightarrow Not unique decomposition.

- For $m=1, n^{2}=2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2}$.

$$
\left(x_{0}^{2}\right)_{2}
$$

$$
\left(x_{1}^{2}\right)_{2}
$$

$|x|$ denotes the binary length of x.
If $\ell_{1}+1>2\left|x_{0}\right|$, no interference between $2^{\ell_{1}+1} x_{1} x_{0}$ and x_{0}^{2}.
If $2 \ell_{1}>\ell_{1}+1+\left|x_{1}\right|+\left|x_{0}\right|$, no interference between x_{1}^{2} and $2^{\ell_{1}+1} x_{1} x_{0}$.

Interference graph

Write $n=2^{\ell_{m}} x_{m}+\cdots+2^{\ell_{1}} x_{1}+x_{0}$ such that

$$
(n)_{2}=\left(x_{m}\right)_{2} 0 \cdots 0\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0 \cdots 0\left(x_{0}\right)_{2}, \eta_{i} \geq 0 .
$$

\rightarrow Not unique decomposition.

- For $m=1, n^{2}=2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2}$.

$$
\left(x_{0}^{2}\right)_{2}
$$

$|x|$ denotes the binary length of x.
If $\ell_{1}+1>2\left|x_{0}\right|$, no interference between $2^{\ell_{1}+1} x_{1} x_{0}$ and x_{0}^{2}. If $2 \ell_{1}>\ell_{1}+1+\left|x_{1}\right|+\left|x_{0}\right|$, no interference between x_{1}^{2} and $2^{\ell_{1}+1} x_{1} x_{0}$.

In this case, n^{2} is composed of three independent blocks.

Interference graph

$m=2$

- For $m=2$, we have

$$
\begin{aligned}
n & =2^{\ell_{2}} x_{2}+2^{\ell_{1}} x_{1}+x_{0} . \\
n^{2} & =2^{2 \ell_{2}} x_{2}^{2}+2^{\ell_{2}+\ell_{1}+1} x_{2} x_{1}+\underbrace{2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{2}+1} x_{2} x_{0}}_{\text {potential interference }}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2} .
\end{aligned}
$$

Potential interference even if ℓ_{i} large enough.

Interference graph

$m=2$

- For $m=2$, we have

$$
\begin{aligned}
n & =2^{\ell_{2}} x_{2}+2^{\ell_{1}} x_{1}+x_{0} . \\
n^{2} & =2^{2_{2} x_{2}^{2}}+2^{\ell_{2}+\ell_{1}+1} x_{2} x_{1}+\underbrace{2^{2 \ell_{1}} x_{1}^{2}+2^{\ell_{2}+1} x_{2} x_{0}}_{\text {potential interference }}+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2} .
\end{aligned}
$$

Potential interference even if ℓ_{i} large enough.

Figure: Interference graph for $m=1$.

Figure: Interference graph for $m=2$.

Interference graph

$m=3$

- For $m=3$, we have

$$
\begin{aligned}
& n=2^{\ell_{3}} x_{3}+2^{\ell_{2}} x_{2}+2^{\ell_{1}} x_{1}+x_{0} . \\
& n^{2}=2^{2 \ell_{3}} x_{3}^{2}+2^{\ell_{3}+\ell_{2}+1} x_{3} x_{2}+\cdots+2^{\ell_{1}+1} x_{1} x_{0}+x_{0}^{2} .
\end{aligned}
$$

9 blocks and 5 potential interferences if ℓ_{i} large enough.

Figure: Interference graph for $m=3$.

Factorization lemma

For $k \geq 1$, there exists N_{k} such that every odd integer $n \geq N_{k}$ with $s(n)=s\left(n^{2}\right)=k$ can be factorized

$$
(n)_{2}=\left(x_{m}\right)_{2} 0^{\eta_{m}}\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0^{\eta_{1}}\left(x_{0}\right)_{2}
$$

with $\min \left(\eta_{i}\right)>2 \max \left(\left|x_{i}\right|\right)+k^{2}$.

Useful to

- prove that there is finitely many solutions.
- find easily infinite families of solutions.

Factorization lemma

For $k \geq 1$, there exists N_{k} such that every odd integer $n \geq N_{k}$ with $s(n)=s\left(n^{2}\right)=k$ can be factorized

$$
(n)_{2}=\left(x_{m}\right)_{2} 0^{\eta_{m}}\left(x_{m-1}\right)_{2} \cdots\left(x_{1}\right)_{2} 0^{\eta_{1}}\left(x_{0}\right)_{2}
$$

with $\min \left(\eta_{i}\right)>2 \max \left(\left|x_{i}\right|\right)+k^{2}$.
Useful to

- prove that there is finitely many solutions.
- find easily infinite families of solutions.

The bound N_{k} is very large: $N_{9}=2^{611669}$.

Distribution for 11 bits: Example 1

Suppose n is such that $s(n)=s\left(n^{2}\right)=11$ and satisfies the factorization lemma. Distribute 11 1-bits in the 3 independent blocks. For example:

$$
\begin{aligned}
& 4 \\
& x_{1}^{2}
\end{aligned} x_{1} x_{1}^{2} x_{0} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=4 \\
s\left(x_{1} x_{0}\right)=3 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
$$

Distribution for 11 bits: Example 1

Suppose n is such that $s(n)=s\left(n^{2}\right)=11$ and satisfies the factorization lemma.
Distribute 11 1-bits in the 3 independent blocks. For example:

$$
\begin{aligned}
& 4 \\
& x_{1}^{2}
\end{aligned} x_{1}^{2} x_{0}^{2} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=4 \\
s\left(x_{1} x_{0}\right)=3 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
$$

Lemma (Kaneko, Stoll, 2022)
Let a, b be odd integers, $s(a)=\ell, s(b)=m \geq 3$.

$$
\begin{aligned}
& s(a b)=2 \Longrightarrow a b<2^{2 \ell m-4} \\
& s(a b)=3 \Longrightarrow a b<2^{4 \ell m-13}
\end{aligned}
$$

Computer research is sufficient: $a b<2^{107}$.

Distribution for 11 bits: Example 2

Suppose n is such that $s(n)=s\left(n^{2}\right)=11$ and satisfies the factorization lemma.
Distribute 11 1-bits in the 3 independent blocks. For example:

$$
\begin{aligned}
& 3
\end{aligned}
$$

Distribution for 11 bits: Example 2

Suppose n is such that $s(n)=s\left(n^{2}\right)=11$ and satisfies the factorization lemma.
Distribute 11 1-bits in the 3 independent blocks. For example:

$$
\begin{aligned}
& 3 \\
& x_{1}^{2} x_{1} x_{0}^{2} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=3 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
\end{aligned}
$$

Computer research is no longer possible for $s\left(x_{1} x_{0}\right)=4$ since

Lemma (Kaneko, Stoll, 2022)

For all integers $L \geq 1$ there exist integers $\ell, m \geq L$ such that there are infinitely many pairs (a, b) of positive odd integers with

$$
s(a)=\ell, s(b)=m, s(a b)=4
$$

Suppose n is such that $s(n)=s\left(n^{2}\right)=11$ and satisfies the factorization lemma. Distribute 11 1-bits in the 3 independent blocks. For example:

$$
\begin{aligned}
& 3 \\
& x_{1}^{2}
\end{aligned} x_{0}^{2} x_{0}^{2} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=3 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
$$

Computer research is no longer possible for $s\left(x_{1} x_{0}\right)=4$ since

Lemma (Kaneko, Stoll, 2022)

For all integers $L \geq 1$ there exist integers $\ell, m \geq L$ such that there are infinitely many pairs (a, b) of positive odd integers with

$$
s(a)=\ell, s(b)=m, s(a b)=4
$$

Focus on solutions of $s\left(n^{2}\right)=k$ for small $k \geq 2$.Interference graph
(3) Few binary digitsAlgorithm
(5) Open questions

Few binary digits

Results

$$
\begin{aligned}
& E_{k}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n \text { odd }\right\} . \\
& k E_{k} \\
& \hline 1\{1\} \\
& 2\{3\} \\
& \hline
\end{aligned}
$$

Few binary digits

Results

$E_{k}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n\right.$ odd $\}$.		
k	E_{k}	
1	$\{1\}$	
2	$\{3\}$	
3	$\{7,23\} \cup F$,	Szalay (2002).
	F infinite family.	
	\rightarrow Ber all $n \in F, s(n)=2$.	

Few binary digits

Results

$E_{k}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n\right.$ odd $\}$		
k	E_{k}	
1	$\{1\}$	
2	$\{3\}$	
3	$\{7,23\} \cup F$,	Szalay (2002).
	F infinite family.	
		for all $n \in F, s(n)=2$.
		\rightarrow Beukers result on the RN equation.
4	Finite set.	
		\rightarrow Bennett, Bugeaud, Mignotte (2012).

Few binary digits

Results

$E_{k}:=$	$\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n\right.$ odd $\}$.	
k	E_{k}	
1	$\{1\}$	
2	$\{3\}$	
3	$\{7,23\} \cup F$,	Szalay (2002).
	F infinite family.	for all $n \in F, s(n)=2$.
		\rightarrow Beukers result on the RN equation.
4	Finite set.	Bennett, Bugeaud, Mignotte (2012). $\quad\{13,15,47,111\}$

Few binary digits

Results

$E_{k}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n\right.$ odd $\}$		
k	E_{k}	
1	$\{1\}$	
2	$\{3\}$	
3	$\{7,23\} \cup F$,	Szalay (2002).
	F infinite family.	
		for all $n \in F, s(n)=2$.
	\rightarrow Beukers result on the RN equation.	
4	Finite set.	
		Bennett, Bugeaud, Mignotte (2012).
	$\{13,15,47,111\}$	
5	$F_{1} \cup F_{2} \cup F_{3} \cup E_{5}^{\prime}$,	Conjecture (2012), still open.
	F_{i} infinite families,	for all $n \in F_{i}, s(n)=3$.
	E_{5}^{\prime} finite set.	\rightarrow Combinatorial tools.

Few binary digits

Results

$E_{k}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, n\right.$ odd $\}$.		
$k \quad E_{k}$		
1	\{1\}	
2	\{3\}	
3	$\{7,23\} \cup F$,	Szalay (2002).
	F infinite family.	for all $n \in F, s(n)=2$.
		\rightarrow Beukers result on the RN equation.
4	Finite set.	Bennett, Bugeaud, Mignotte (2012).
		\rightarrow Linear forms in logarithms.
	$\{13,15,47,111\}$	Conjecture (2012), still open.
5	$F_{1} \cup F_{2} \cup F_{3} \cup E_{5}^{\prime}$,	Aloui, Jamet, Kaneko, Kopecki, P., Stoll (2023)
	F_{i} infinite families,	for all $n \in F_{i}, s(n)=3$.
	E_{5}^{\prime} finite set.	\rightarrow Combinatorial tools.
	$E_{5}^{\prime}=\{29, \ldots, 5793\}$	Conjecture (2023)

$$
\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=3 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
$$

Problem: All solutions of $s\left(x_{0}^{2}\right)=4$ are not known.

$$
\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=3 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=4
\end{array}\right.
$$

Problem: All solutions of $s\left(x_{0}^{2}\right)=4$ are not known. But, we only need integers of E_{4} with bounded sum of digits.

$$
E_{k, \lambda}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, s(n)=\lambda, n \text { odd }\right\}, \quad E_{k}=\bigcup_{\lambda \geq 1} E_{k, \lambda}
$$

$$
\begin{aligned}
& 3
\end{aligned}
$$

Problem: All solutions of $s\left(x_{0}^{2}\right)=4$ are not known.
But, we only need integers of E_{4} with bounded sum of digits.

$$
E_{k, \lambda}:=\left\{n \in \mathbb{N}: s\left(n^{2}\right)=k, s(n)=\lambda, n \text { odd }\right\}, \quad E_{k}=\bigcup_{\lambda \geq 1} E_{k, \lambda}
$$

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

$$
\bigcup_{1 \leq \lambda \leq 17} E_{4, \lambda}=\{13,15,47,111\}
$$

Proof: By an algorithm that constructs all possible solutions for a given weight. Supports the conjecture $E_{4}=\{13,15,47,111\}$ since $s(111)=6$.

Distribution for 11 bits: Example 2

$$
\begin{gathered}
\overbrace{}^{3} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=3 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=4 .
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{l}
s\left(x_{0}\right)+s\left(x_{1}\right)=11 \\
x_{1} \in\{7,23\}, \text { or } x_{1}=2^{\ell}+1, \ell \geq 2 . \\
s\left(x_{1} x_{0}\right)=4, \\
x_{0} \in\{13,15,47,111\} .
\end{array}\right.
\end{gathered}
$$

Then $s\left(x_{0}\right)+s\left(x_{1}\right) \leq 4+6<11 \Longrightarrow$ no solution for this distribution of digits.

Distribution for 11 bits: Example 3

$$
2 x^{2} x^{2} \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=2 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=5
\end{array}\right.
$$

Same problem for solutions of $s\left(x_{0}^{2}\right)=5$.
Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

$$
\bigcup_{4 \leq \lambda \leq 15} E_{5, \lambda}=\{29,31,51,79,91,95,157,223,279,479,727,1471,5793\}
$$

\rightarrow This set is the conjectured set for E_{5}^{\prime}.

$$
2 x_{1}^{2} \quad 5 \quad\left\{\begin{array}{l}
s\left(x_{1}\right)+s\left(x_{0}\right)=11 \\
s\left(x_{1}^{2}\right)=2 \\
s\left(x_{1} x_{0}\right)=4 \\
s\left(x_{0}^{2}\right)=5
\end{array}\right.
$$

Same problem for solutions of $s\left(x_{0}^{2}\right)=5$.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

$$
\bigcup_{4 \leq \lambda \leq 15} E_{5, \lambda}=\{29,31,51,79,91,95,157,223,279,479,727,1471,5793\}
$$

\rightarrow This set is the conjectured set for E_{5}^{\prime}.
$\Longrightarrow\left\{\begin{array}{l}s\left(x_{0}\right)+s\left(x_{1}\right)=11, \\ x_{1}=3, \\ s\left(x_{1} x_{0}\right)=4, \\ x_{0} \in\{29,31, \ldots, 1471,5793\} .\end{array} \Longrightarrow s\left(x_{0}\right)=9\right.$ and $x_{0}=1471$.
Since $s(3 \cdot 1471)=7>4$, there is no solution for this distribution of digits.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)
If $9 \leq k \leq 11$, (2) has finitely many solutions.

Proof

- Fix k and consider n that satisfies the factorization lemma for some $m \leq k$.
- Finite number of distribution of digits for each m.
- Prove that all of them leads to a contradiction.Interference graph
(3) Few binary digits

4 Algorithm
(5) Open questions

Suppose that $n=1+2^{\ell} y, y$ odd, $\ell \geq 1$, such that $s\left(n^{2}\right)=4$.

$$
\begin{aligned}
& s\left(1+2^{\ell+1} y+2^{2 \ell} y^{2}\right)=4 \\
& s\left(y+2^{\ell-1} y^{2}\right)=3
\end{aligned}
$$

Suppose that $n=1+2^{\ell} y, y$ odd, $\ell \geq 1$, such that $s\left(n^{2}\right)=4$.

$$
\begin{aligned}
& s\left(1+2^{\ell+1} y+2^{2 \ell} y^{2}\right)=4 \\
& s\left(y+2^{\ell-1} y^{2}\right)=3
\end{aligned}
$$

Suppose that $n=1+2^{\ell} y$, y odd, $\ell \geq 1$, such that $s\left(n^{2}\right)=4$.

$$
\begin{aligned}
& s\left(1+2^{\ell+1} y+2^{2 \ell} y^{2}\right)=4 \\
& s\left(y+2^{\ell-1} y^{2}\right)=3
\end{aligned}
$$

Extending y with 1 does not changed y_{2}.

For odd integers a, b,

$$
a \equiv b \quad\left(\bmod 2^{\lambda}\right) \Longrightarrow a^{2} \equiv b^{2} \quad\left(\bmod 2^{\lambda+1}\right)
$$

Suppose that $n=1+2^{\ell} y, y$ odd, $\ell \geq 1$, such that $s\left(n^{2}\right)=4$.

$$
\begin{aligned}
& s\left(1+2^{\ell+1} y+2^{2 \ell} y^{2}\right)=4 \\
& s\left(y+2^{\ell-1} y^{2}\right)=3
\end{aligned}
$$

Extending y with 0 does not changed y_{2}.

For odd integers a, b,

$$
a \equiv b \quad\left(\bmod 2^{\lambda}\right) \Longrightarrow a^{2} \equiv b^{2} \quad\left(\bmod 2^{\lambda+1}\right)
$$

Start from a candidate y and extend y on the left by

- a 1: finite number of extension since $s(y) \leq k-1$ by hypothesis.
- a 0: not a too large block of consecutive 0 , otherwise too many digits in the sum.
\Longrightarrow Finite number of possible extensions.
If the algorithm ends, it gives all solutions to $s\left(n^{2}\right)=4$ and $s(n)=k$.

Start from a candidate y and extend y on the left by

- a 1: finite number of extension since $s(y) \leq k-1$ by hypothesis.
- a 0: not a too large block of consecutive 0 , otherwise too many digits in the sum.
\Longrightarrow Finite number of possible extensions.
If the algorithm ends, it gives all solutions to $s\left(n^{2}\right)=4$ and $s(n)=k$.

k	Computation time
15	1 sec
16	102 sec
17	2 h 50 mn

$$
\bigcup_{1 \leq \lambda \leq 17} E_{4, \lambda}=\{13,15,47,111\}
$$

Start from a candidate y and extend y on the left by

- a 1: finite number of extension since $s(y) \leq k-1$ by hypothesis.
- a 0: not a too large block of consecutive 0 , otherwise too many digits in the sum.
\Longrightarrow Finite number of possible extensions.
If the algorithm ends, it gives all solutions to $s\left(n^{2}\right)=4$ and $s(n)=k$.

k	Computation time
15	1 sec
16	102 sec
17	2 h 50 mn

$$
\bigcup_{1 \leq \lambda \leq 17} E_{4, \lambda}=\{13,15,47,111\}
$$

We also have

$$
\bigcup_{\leq \lambda \leq 15} E_{5, \lambda}=\{29,31,51,79,91,95,157,223,279,479,727,1471,5793\}
$$Interference graphFew binary digits

4 Algorithm
(5) Open questions

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

"Natural" conjecture

For $k=14,15$, (2) has infinitely many solutions.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

"Natural" conjecture

For $k=14,15$, (2) has infinitely many solutions.
\rightarrow Global research of every odd integer n such that $s(n)=s\left(n^{2}\right)=k, \quad n \leq 2^{80}$. Number of integers to check: $\binom{79}{k-1}$ very large.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

"Natural" conjecture

For $k=14,15$, (2) has infinitely many solutions.
\rightarrow Global research of every odd integer n such that $s(n)=s\left(n^{2}\right)=k, \quad n \leq 2^{80}$. Number of integers to check: $\binom{79}{k-1}$ very large.

Parallelize the program.
Set up the first four nonzero bits of n :

$$
n=1+2^{a}+2^{b}+2^{c}+y, \quad 1 \leq a<b<c, \quad 2^{c}<y \leq 2^{80}
$$

Number of integers to check: $\binom{79-c}{k-4}$ smaller but large number of cases.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

\rightarrow Global research of every odd integer n such that $s(n)=s\left(n^{2}\right)=k, \quad n \leq 2^{80}$.

- For $k=11$, the largest solution is $n=35463511416833$ of binary length 46 .
- For $k=14,15$, we have solutions of binary length 80 , for example:

$$
\begin{aligned}
& n=605643510452789079965697 \text { satisfies } s(n)=s\left(n^{2}\right)=14 \\
& n=605642350760526229274625 \text { satisfies } s(n)=s\left(n^{2}\right)=15
\end{aligned}
$$

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

\rightarrow Global research of every odd integer n such that $s(n)=s\left(n^{2}\right)=k, \quad n \leq 2^{80}$.

- For $k=11$, the largest solution is $n=35463511416833$ of binary length 46 .
- For $k=14,15$, we have solutions of binary length 80 , for example:

$$
\begin{aligned}
& n=605643510452789079965697 \text { satisfies } s(n)=s\left(n^{2}\right)=14 \\
& n=605642350760526229274625 \text { satisfies } s(n)=s\left(n^{2}\right)=15
\end{aligned}
$$

But no obvious infinite family.

Conjecture

For $k=14,15,(2)$ has finitely many solutions.

$$
\begin{equation*}
s(n)=s\left(n^{2}\right)=k, \quad n \text { odd } \tag{2}
\end{equation*}
$$

k	$1-8$	$9-11$	$12-13$	$14-15$	≥ 16
Solutions	$<\infty$	$<\infty$	∞	$?$	∞

\rightarrow Global research of every odd integer n such that $s(n)=s\left(n^{2}\right)=k, \quad n \leq 2^{80}$.

- For $k=11$, the largest solution is $n=35463511416833$ of binary length 46 .
- For $k=14,15$, we have solutions of binary length 80 , for example:

$$
\begin{aligned}
& n=605643510452789079965697 \text { satisfies } s(n)=s\left(n^{2}\right)=14 \\
& n=605642350760526229274625 \text { satisfies } s(n)=s\left(n^{2}\right)=15
\end{aligned}
$$

But no obvious infinite family.

Conjecture

For $k=14,15,(2)$ has finitely many solutions.

Thank you for your attention!

