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Introduction
Exponential diophantine equations

Exponential diophantine equations J

Diophantine equations with variables that appears in exponents.

Large family of problems, classically studied in number theory.

o Ramanujan—-Nagell equation: 2" — 7 = x2.

— Ramanujan (1913) conjectured that solutions are n = 3,4,5,7,15.
— Nagell (1948) proved this conjecture.
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Introduction
Exponential diophantine equations

Exponential diophantine equations

Diophantine equations with variables that appears in exponents. J

Large family of problems, classically studied in number theory.

o Ramanujan—-Nagell equation: 2" — 7 = x2.

— Ramanujan (1913) conjectured that solutions are n = 3,4,5,7,15.
— Nagell (1948) proved this conjecture.

— Apéry (1960) proved that the equation 2" — D = x> has at most two
solutions (D > 0, D # 7).
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Introduction
Exponential diophantine equations

Exponential diophantine equations

Diophantine equations with variables that appears in exponents. J

Large family of problems, classically studied in number theory.

o Ramanujan—-Nagell equation: 2" — 7 = x2.

— Ramanujan (1913) conjectured that solutions are n = 3,4,5,7,15.
— Nagell (1948) proved this conjecture.

— Apéry (1960) proved that the equation 2" — D = x> has at most two
solutions (D > 0, D # 7).
o Generalized Ramanujan—Nagell equation: y" — D = x?, D # 0.
— Beukers (2002): At most four solutions for D < 0.
— Bugeaud-Mignotte-Siksek (2006): All solutions for 1 < D < 100.
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Introduction
Exponential diophantine equations

Exponential diophantine equations

Diophantine equations with variables that appears in exponents. J

Large family of problems, classically studied in number theory.

o Ramanujan—-Nagell equation: 2" — 7 = x2.

— Ramanujan (1913) conjectured that solutions are n = 3,4,5,7,15.
— Nagell (1948) proved this conjecture.

— Apéry (1960) proved that the equation 2" — D = x> has at most two
solutions (D > 0, D # 7).
o Generalized Ramanujan—Nagell equation: y" — D = x?, D # 0.
— Beukers (2002): At most four solutions for D < 0.
— Bugeaud-Mignotte-Siksek (2006): All solutions for 1 < D < 100.

o Catalan's conjecture (1844): x* —y* =1, a,b> 1, x,y >0
— X:b:3,y:a:2.
— Mih3ilescu (2003) proved this conjecture.
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Introduction
Sum of digits
Let k> 2

P =2%14 ... 42141 0<a<--<ak1. (1)
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Introduction
Sum of digits
Let k> 2

N =2%1 4 42T L] 0<a < < apo (1)

s(n) = sum of digits function in base 2, the Hamming weight.
— n satisfies (1) if and only if s(n*) = k and n is odd.
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Introduction
Sum of digits
Let k> 2

=214 42T 4] 0<a<oe < ak1 (1)

s(n) = sum of digits function in base 2, the Hamming weight.
— n satisfies (1) if and only if s(n*) = k and n is odd.
a, b positive integers.

e Subadditive: s(a+ b) < s(a) + s(b).

o Submultiplicative: s(ab) < s(a)s(b).

e 2-additive: If b < 2", s(a2" + b) = s(a) + s(b).

(a2 0---0 0---0 =a2"
+ 0---0 (b)2 =bh
(a2 0---0 (b) =a2"+b.
The sum is non-interfering: no interaction between the digits of a and b.
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Introduction
Sum of digits

Expected values:

NZ () = 3 loga(N) + O(1),

< Z = logy(N) + O(1).
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Introduction
Sum of digits

Expected values: ° Stolarsky (1978)
lim |nf =0,
| N
N Z (n) = og2( )+ o), limsup ( 2) = 0.
1<n<N s(n)
N Z = log,(N) + O(1). ° I\iladrltsch Stoll (2014):
1<n<N s(n

is dense in RY.
s(n)
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Introduction
Sum of digits

Expected values: ° Stolarsky (1978)
liminf <) — 0,
Io N)+ O(1
=37 s = 2 tog(W) + 0(), imsup 22 — oo,
1<n<N s(n)
N Z = log,(N) + O(1). ° I\iladrltsch Stoll (2014):
1<n<N s(n

is dense in RY.
s(n)

Let kK > 1, we study the following equation

s(n) = s(n”) = k, n odd. (2)

— Exceptionnal set of integers.
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Introduction
Sum of digits

Expected values: ° Stolarsky (1978)
liminf <) — 0,
Io N)+ O(1
=37 s = 2 tog(W) + 0(), imsup 22 — oo,
1<n<N s(n)
N Z = log,(N) + O(1). ° I\iladrltsch Stoll (2014):
1<n<N s(n

is dense in RY.
s(n)

Let kK > 1, we study the following equation
s(n) = s(n”) = k, n odd. (2)

— Exceptionnal set of integers.

91=1+2+8+16+ 64, (91), = 1011011, s(91) =5
912 =148+ 16 + 64 423, (91?), = 10000001011001,  s(91%) = 5.
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Introduction
Sum of digits

Expected values: ° Stolarsky (1978)
liminf <) — 0,
n Io N)+ 0(1
=37 s = 2 tog(W) + 0(), imsup 22 — oo,
1<n<N s(n)
N Z = log,(N) + O(1). @ Madritsch, Stoll (2014):
1<n<N () i5 dense in R

s(n)

Let kK > 1, we study the following equation
s(n) = s(n”) = k, n odd. (2)

— Exceptionnal set of integers.

91=1+2+8+16+ 64, (91), = 1011011, s(91) =5
912 =148+ 16 + 64 423, (91?), = 10000001011001,  s(91%) = 5.

Q: Are there finitely or many solutions for (2) ?
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Introduction
Previous result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

o If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

Pierre Popoli On the binary digits of n and n?



Introduction
Previous result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

o If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

@ Proof by an algorithm that computes all the solutions for the first case.
Example: For k = 5, the set of solutions is {31,79,91,157,279}.
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Introduction
Previous result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

o If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

@ Proof by an algorithm that computes all the solutions for the first case.
Example: For k = 5, the set of solutions is {31,79,91,157,279}.

@ Give an infinite family of solutions for each k in the second case:
s(n) = s(n°) = 12, for all n =111 -2" + 111, with t > 15.

(111%), 0---0 (111%), 00---0 (111%), = (n?),

And s(111) = 6, s(111%) = 4.
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Introduction
Our result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

e If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

Q: What about 9 < k <11 and k = 14,157
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Introduction
Our result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

e If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

Q: What about 9 < k <11 and k = 14,157
e Previous algorithm is no longer adapted.

* No infinite family appears clearly.
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Introduction
Our result

s(n) = s(n’) = k, n odd. (2)

Theorem (Hare, Laishram, Stoll, 2011)

e If 1 < k <8, (2) has finitely many solutions.
o If k=12,13 or k > 16, (2) has many solutions.

Q: What about 9 < k <11 and k = 14,157
e Previous algorithm is no longer adapted.

* No infinite family appears clearly.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

If 9 < k <11, (2) has finitely many solutions.

Proof: new combinatorial tools and algorithms.
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e Interference graph

inary digits of n and



Interference graph
m=1

Write n = 2" x, + - - - + 283, + xo such that
()2 = (xm)20- - O(xmor)2 - - (x1)20 - --O(sx0)z, s > 0.

— Not unique decomposition.
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Interference graph
m=1

Write n = 2" x, + - - - + 283, + xo such that
()2 = (xm)20- - O(xmor)2 - - (x1)20 - --O(sx0)z, s > 0.

— Not unique decomposition.

e Form=1, n? = 22£1X12 + 221+1X1Xo + Xg.
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Interference graph
m=1

Write n = 2" x, + - - - + 283, + xo such that
()2 = (xm)20- - O(xmor)2 - - (x1)20 - --O(sx0)z, s > 0.

— Not unique decomposition.

e Form=1, n? = 22£1X12 + 221+1X1Xo + Xg.

(x3)2
l+1
(x1x0)2
204
()2
|x| denotes the binary length of x.
If /1 + 1 > 2|x0|, no interference between 26+15 xo and Xg.
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Interference graph
m=1

Write n = 2" x, + - - - + 283, + xo such that
()2 = (xm)20- - O(xmor)2 - - (x1)20 - --O(sx0)z, s > 0.

— Not unique decomposition.

e Form=1, n? = 22£1X12 + 221+1X1Xo + Xg.

(x3)2

/1 +1

(x1x0)2

20,

()2

|x| denotes the binary length of x.

oli+1

If /1 + 1 > 2|x0|, no interference between x1x0 and xZ.

If 201 > 61+ 14 pal + |0 20+l

, no interference between x? and

X1X0.
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Interference graph
m=1

Write n = 2" x, + - - - + 283, + xo such that
()2 = (xm)20- - O(xmor)2 - - (x1)20 - --O(sx0)z, s > 0.

— Not unique decomposition.

e Form=1, n? = 22£1X12 + 221+1X1Xo + Xg.

(x3)2

/1 +1

(x1x0)2

20,

()2

|x| denotes the binary length of x.

oli+1

If /1 + 1 > 2|x0|, no interference between x1x0 and xZ.

If 201 > 61+ 14 pal + |0 20+l

, no interference between x? and

X1X0.

2

In this case, n“ is composed of three independent blocks.
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Interference graph

m=2

e For m = 2, we have

n= 2£2X2 + 2Z1X]_ + Xp.

2 20, 2 ) 1 20, 2 o t1 1 2
n- =2 ZZXz 4 pltht Xox1 + 27 X7 + obt X2X0 4oht X1X0 + Xp -
e —

potential interference

Potential interference even if ¢; large enough.
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Interference graph

m=2

e For m = 2, we have

n= 2£2X2 + 2Z1X]_ + Xp.

2 20, 2 ) 1 20, 2 o t1 1 2
n- =2 ZZXz 4 pltht Xox1 + 27 X7 + obt X2X0 4oht X1X0 + Xp -
e —

potential interference

Potential interference even if ¢; large enough.

(x6)2
4 1
(x1x0)2 L
L 1
(x2x0)2 2T
20
(x7)2 '
o+ 61 +1
(x2x1)2
20,

(x2)>
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Interference graph
Graphs for m =1 and m = 2

Figure: Interference graph for m = 1.

Figure: Interference graph for m = 2.
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Interference graph

m=23

e For m = 3, we have

n= 2Z3X3 + 2é2xz + 2Z1X]_ + Xo.

2 205 2 041 141 2
n? =2%,2 4 ot + o 290 0 + X8

9 blocks and 5 potential interferences if ¢; large enough.

OISISICICISIO)
OISO

Figure: Interference graph for m = 3.
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Interference graph
Factorization lemma

Factorization lemma

For k > 1, there exists Ni such that every odd integer n > Nj with
s(n) = s(n*) = k can be factorized

()2 = (xm)20"" (xm—1)2 - - - (x1)20™ (x0)2,

with min(n;) > 2 max(|x|) + k2.

Useful to
@ prove that there is finitely many solutions.

o find easily families of solutions.
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Interference graph
Factorization lemma

Factorization lemma

For k > 1, there exists Ni such that every odd integer n > Nj with
s(n) = s(n*) = k can be factorized

()2 = (xm)20"" (xm—1)2 - - - (x1)20™ (x0)2,

with min(n;) > 2 max(|x|) + k2.

Useful to
@ prove that there is finitely many solutions.

o find easily families of solutions.

The bound Nj is very large: No = 2511699,
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Interference graph
Distribution for 11 bits: Example 1

Suppose n is such that s(n) = s(n?) = 11 and satisfies the factorization lemma.

Distribute 11 1-bits in the 3 independent blocks. For example:

4 3 4 ( o
@ N
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Interference graph
Distribution for 11 bits: Example 1

Suppose n is such that s(n) = s(n?) = 11 and satisfies the factorization lemma.

Distribute 11 1-bits in the 3 independent blocks. For example:

4 3 4 ( )7
@ o

Lemma (Kaneko, Stoll, 2022)

Let a, b be odd integers, s(a) = ¢,s(b) = m > 3.

s(ab) =2 = ab < 2*™*

s(ab) =3 = ab < 2™ 13,

Computer research is sufficient: ab < 217
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Interference graph
Distribution for 11 bits: Example 2

Suppose n is such that s(n) = s(n®) = 11 and satisfies the factorization lemma.

Distribute 11 1-bits in the 3 independent blocks. For example:

3 4 4 (
() =
() o)
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Interference graph
Distribution for 11 bits: Example 2

Suppose n is such that s(n) = s(n®) = 11 and satisfies the factorization lemma.

Distribute 11 1-bits in the 3 independent blocks. For example:

3 4 4 ( "
() 6 (3) s

Computer research is no longer possible for s(x1x0) = 4 since

Lemma (Kaneko, Stoll, 2022)

For all integers L > 1 there exist integers ¢, m > L such that there are infinitely
many pairs (a, b) of positive odd integers with

s(a) = ¢, s(b) = m, s(ab) = 4.
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Interference graph
Distribution for 11 bits: Example 2

Suppose n is such that s(n) = s(n®) = 11 and satisfies the factorization lemma.

Distribute 11 1-bits in the 3 independent blocks. For example:

3 4 4 (
6 o)

Computer research is no longer possible for s(x1x0) = 4 since

Lemma (Kaneko, Stoll, 2022)

For all integers L > 1 there exist integers ¢, m > L such that there are infinitely
many pairs (a, b) of positive odd integers with

s(a) = ¢, s(b) = m, s(ab) = 4.

Focus on solutions of s(n?) = k for small k > 2.
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e Few binary digits

On the binary digits of n and n?



Few binary digits
Results

E, = {n €N:s(n®)=k,n odd}.
k  Ex
1 {1}
2 {3
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Few binary digits
Results

E, = {nE N:s(n?) = k,n odd}.

k Ex
1 {1}
2 {3}
3 {7,23}UF, Szalay (2002).
F family. for all n € F, s(n) = 2.

— Beukers result on the RN equation.
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Few binary digits
Results

E, = {nE N:s(n?) = k,n odd}.

k Ex
1 {1}
2 {3}
3 {7,23}UF, Szalay (2002).
F family. for all n € F, s(n) = 2.
— Beukers result on the RN equation.
4 Finite set. Bennett, Bugeaud, Mignotte (2012).

— Linear forms in logarithms.
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Few binary digits
Results

E, = {n €N:s(n?)=k,n odd}.

k  Ex
1 {1}
2 {3}
3 {7,23}UF, Szalay (2002).
F family. for all n € F, s(n) = 2.
— Beukers result on the RN equation.
4 Finite set. Bennett, Bugeaud, Mignotte (2012).
— Linear forms in logarithms.
{13,15,47,111} Conjecture (2012), still open.
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Few binary digits
Results

E, = {n €N:s(n?)=k,n odd}.

k  Ex
1 {1}
2 {3}
3 {7,23}UF, Szalay (2002).
F family. for all n € F, s(n) = 2.
— Beukers result on the RN equation.
4 Finite set. Bennett, Bugeaud, Mignotte (2012).
— Linear forms in logarithms.
{13,15,47,111} Conjecture (2012), still open.
5 FRURUFRUE, Aloui, Jamet, Kaneko, Kopecki, P., Stoll (2023)

Fi families,
E; finite set.

for all n € F;, s(n) = 3.
— Combinatorial tools.
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Few binary digits
Results

E, = {n €N:s(n?)=k,n odd}.

k  Ex
1 {1}
2 {3}
3 {7,23}UF, Szalay (2002).
F family. for all n € F, s(n) = 2.
— Beukers result on the RN equation.
4 Finite set. Bennett, Bugeaud, Mignotte (2012).
— Linear forms in logarithms.
{13,15,47,111} Conjecture (2012), still open.
5 FRURUFRUE, Aloui, Jamet, Kaneko, Kopecki, P., Stoll (2023)

Fi families,
E; finite set.

E!={29,...,5793}.

for all n € F;, s(n) = 3.
— Combinatorial tools.
Conjecture (2023)
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4 ( 2) i
@ £

Problem: All solutions of s(x¢) = 4 are not known.
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4 ( i -
@ e

Problem: All solutions of s(x¢) = 4 are not known.

But, we only need integers of E4 with bounded sum of digits.

Eix:={neN:s(n’) =k,s(n)=X, nodd}, Ec=J,., Ecn
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4 ( i -
OICIGRENF R

Problem: All solutions of s(x¢) = 4 are not known.

But, we only need integers of E4 with bounded sum of digits.

Eix:={neN:s(n’) =k, s(n)=X, nodd}, Ei= Uss1 Bk

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

) B ={13,1547,111}.
1<A<17

Proof. By an algorithm that constructs all possible solutions for a given weight.
Supports the conjecture E; = {13,15,47,111} since s(111) = 6.
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Few binary digits
Distribution for 11 bits: Example 2

3 4 4 ( "
) E))

s(xo) +s(x) =11

x1 €{7,23}, orxy =2+ 1,0 > 2.
S(X1X0) = 4,

xo € {13,15,47,111}.

Then s(xo) +s(x1) <446 < 11 = no solution for this distribution of digits.
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Few binary digits
Distribution for 11 bits: Example 3

2 4 5 ( o
6 o

Same problem for solutions of s(x¢) = 5.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

U Es» = {29,31,51,79,91, 95,157, 223,279,479, 727,1471,5793}.
4<A<15

— This set is the conjectured set for Ef.
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Few binary digits
Distribution for 11 bits: Example 3

(
5

Same problem for solutions of s(x¢) = 5.

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

U B =1{29,31,51,79,91,95,157, 223,279, 479,727, 1471,5793}.
4<A<15

— This set is the conjectured set for Ef.
s(x0) +s(x) =11,

X1 = 3,

s(xaxo) = 4,

xo € {29,31,...,1471,5793}.
Since s(3-1471) = 7 > 4, there is no solution for this distribution of digits.

= s(x0) =9 and xp = 1471.
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Interference graph
Sketch of proof

Theorem (Aloui, Jamet, Kaneko, Kopecki, P., Stoll, 2023)

If 9 < k <11, (2) has finitely many solutions.

Proof
* Fix k and consider n that satisfies the factorization lemma for some m < k.
e Finite number of distribution of digits for each m.

e Prove that all of them leads to a contradiction.
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Algorithm
Algorithm max-integer 1/2

Suppose that n =1+ 2‘y, y odd, £ > 1, such that s(n*) = 4.
s(1+ 2e+1y i 22['y2) — 1,
s(y + 2471y2) =3.
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Algorithm
Algorithm max-integer 1/2

Suppose that n =1+ 2°y, y odd, £ > 1, such that s(n*) = 4.

20 2

s(1+2y + 2%y
s(y+21y%) =3.

)=4,

n

Y2

=(y)2
=)

=y +27)
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Algorithm
Algorithm max-integer 1/2

Suppose that n =1+ 2°y, y odd, £ > 1, such that s(n*) = 4.

s(1+2y +2%y?) =4,

s(y+21y%) =3.

¥

Y2

Extending y with 1 does not changed y».

For odd integers a, b,

= (1y)2
= ((1y)*)2

= (1y + 271 (1y)*)2

a=b (mod2') = a°=b" (mod2*™).
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Algorithm
Algorithm max-integer 1/2

Suppose that n =1+ 2°y, y odd, £ > 1, such that s(n*) = 4.

s(1+2y +2%y?) =4,

s(y+21y%) =3.

¥

Y2

Extending y with 0 does not changed y».

For odd integers a, b,

= (0y)2
= ((0y)*)2

= (0y +271(0y)*)2

a=b (mod2') = a°=b" (mod2*™).
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Algorithm
Algorithm max-integer 2/2

Start from a candidate y and extend y on the left by

@ a 1: finite number of extension since s(y) < k — 1 by hypothesis.

@ a 0: not a too large block of consecutive 0, otherwise too many digits in
the sum.

= Finite number of possible extensions.

If the algorithm ends, it gives all solutions to s(n?) = 4 and s(n) = k. )
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Algorithm
Algorithm max-integer 2/2

Start from a candidate y and extend y on the left by
@ a 1: finite number of extension since s(y) < k — 1 by hypothesis.

@ a 0: not a too large block of consecutive 0, otherwise too many digits in
the sum.

= Finite number of possible extensions.

If the algorithm ends, it gives all solutions to s(n?) = 4 and s(n) = k. )

k | Computation time

15 | 1 sec
16 | 102 sec U E,\ = {13,15,47,111}.
17 | 2h50 mn 1sasly
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Algorithm
Algorithm max-integer 2/2

Start from a candidate y and extend y on the left by
@ a 1: finite number of extension since s(y) < k — 1 by hypothesis.

@ a 0: not a too large block of consecutive 0, otherwise too many digits in
the sum.

= Finite number of possible extensions.

If the algorithm ends, it gives all solutions to s(n?) = 4 and s(n) = k. )

k | Computation time

15 | 1 sec
16 | 102 sec U E,\ = {13,15,47,111}.
17 | 2h50 mn 1sasly

We also have

U Es. = {29,31,51,79,91,95, 157, 223, 279, 479, 727, 1471, 5793}

4<A<15
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Open questions
Remaining cases of (2)

s(n) = s(n’) = k, n odd. (2)
k H 1-8 \ 9-11 \ 12-13 \ 14-15 \ >16
Solutions H < 00 ‘ < 00 ‘ ‘ ? ‘
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Open questions
Remaining cases of (2)

s(n) = s(n®) = k, n odd. (2
k H 1-8 \ 9-11 \ 12-13 \ 14-15 \ >16
Solutions ‘ < 00 ‘ < 00 ‘ ‘ ? ‘

“Natural” conjecture

For k = 14,15, (2) has many solutions.
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Open questions
Remaining cases of (2)

s(n) = s(n®) = k, n odd. (2
k H 1-8 \ 9-11 \ 12-13 \ 14-15 \ >16
Solutions ‘ < 00 ‘ < 00 ‘ ‘ ? ‘

“Natural” conjecture

For k = 14,15, (2) has many solutions.

2

— Global research of every odd integer n such that s(n) = s(n®) = k, n < 2%,

N

Number of integers to check: (k7_91) very large.

Pierre Popoli On the binary digits of n and n?



Open questions

Remaining cases of (2)

s(n) = s(n®) = k, n odd. (2
k|| 1-8 | 9-11 | 12-13 | 14-15 | >16
Solutions ‘ < 00 ‘ < 00 ‘ ‘ ? ‘

“Natural” conjecture
For k = 14,15, (2) has many solutions.

— Global research of every odd integer n such that s(n) = s(n®) = k, n < 2%,

Number of integers to check: (k7_91) very large.

Parallelize the program.

Set up the first four nonzero bits of n:

n=1+4+2"42°42°4y 1<a<b<ec 2°<y<2%

79—6)

Number of integers to check: (k74 smaller but large number of cases.
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Open questions
Remaining cases of (2)

s(n) = s(n) = k, n odd. (2
k| 18 | 911 | 12-13 | 14-15 | >16
Solutions H < 00 ‘ < 00 ‘ ‘ ? ‘

— Global research of every odd integer n such that s(n) = s(n?) = k, n < 2%
e For k = 11, the largest solution is n = 35463511416833 of binary length 46.

e For k = 14,15, we have solutions of binary length 80, for example:
n = 605643510452789079965697 satisfies s(n) = s(n?) = 14.
n = 605642350760526229274625 satisfies s(n) = s(n?) = 15.
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Open questions
Remaining cases of (2)

s(n) = s(n) = k, n odd. (2

k| 18
Solutions H < 00 ‘

| o-11 | 12-13 | 14-15 | >16
T~ T 7

— Global research of every odd integer n such that s(n) = s(n?) = k, n < 2%
e For k = 11, the largest solution is n = 35463511416833 of binary length 46.

e For k = 14,15, we have solutions of binary length 80, for example:
n = 605643510452789079965697 satisfies s(n) = s(n?) = 14.
n = 605642350760526229274625 satisfies s(n) = s(n?) = 15.

But no obvious infinite family.

For k = 14,15, (2) has finitely many solutions.
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Open questions
Remaining cases of (2)

s(n) = s(n) = k, n odd. (2

k| 18
Solutions H < o0 ‘

| o-11 | 12-13 | 14-15 | >16
T~ T 7

— Global research of every odd integer n such that s(n) = s(n?) = k, n < 2%
e For k = 11, the largest solution is n = 35463511416833 of binary length 46.

e For k = 14,15, we have solutions of binary length 80, for example:
n = 605643510452789079965697 satisfies s(n) = s(n?) = 14.
n = 605642350760526229274625 satisfies s(n) = s(n?) = 15.

But no obvious infinite family.

For k = 14,15, (2) has finitely many solutions.

Thank you for your attention !
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