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Regular Sequences Asymptotics Decidability

Binary Sum-of-Digits Function

Example

s
(
26
)

=

s
(
(11010)2

)
= 3

Recursive Description

even numbers: s(2n) = s(n)

odd numbers: s(2n + 1) = s(n) + 1

generalizations: s(2j n) = s(n)

s(2j n + r) = s(n) + s(r), 0 ≤ r < 2j

Rewriting as Linear Combinations

s(2j n + r) = 1 · s(n) + cjr · 1 for every j ≥ 0, 0 ≤ r < 2j
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Regular Sequences Asymptotics Decidability

k-regular Sequences

k-regular Sequence f (n)

k-kernel
{

f (k j n + r) | j ≥ 0, 0 ≤ r < k j
}

is contained in
finitely generated module

explicitly:

there exist sequences f1(n), . . . fs(n) such that

for all j ≥ 0, 0 ≤ r < k j

there exist c1, . . . , cs

with
f (k j n + r) = c1f1(n) + · · ·+ cs fs(n)
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k-kernel
{
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}
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〈. . .〉
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Regular Sequences Asymptotics Decidability

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)

odd numbers: s(2n + 1) = s(n) + 1

vector-valued sequence

set v(n) = (s(n), 1)T

even v(2n) =

(
s(n)

1

)
=

(
1 0
0 1

)
v(n)

odd v(2n + 1) =

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

iterate  product of matrices

k-regular Sequence f (n)

square matrices M0, . . . , Mk−1

vectors u and w

k-linear representation

f (n) = uT Mn0Mn1 . . .Mn`−1
w

with standard k-ary expansion

n = (n`−1 . . . n1n0)k

k-Regular Sequences Daniel Krenn



Regular Sequences Asymptotics Decidability

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)

odd numbers: s(2n + 1) = s(n) + 1

vector-valued sequence

set v(n) = (s(n), 1)T

even v(2n) =

(
s(n)

1

)
=

(
1 0
0 1

)
v(n)

odd v(2n + 1) =

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

iterate  product of matrices

k-regular Sequence f (n)

square matrices M0, . . . , Mk−1

vectors u and w

k-linear representation

f (n) = uT Mn0Mn1 . . .Mn`−1
w

with standard k-ary expansion

n = (n`−1 . . . n1n0)k

k-Regular Sequences Daniel Krenn



Regular Sequences Asymptotics Decidability

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)

odd numbers: s(2n + 1) = s(n) + 1

vector-valued sequence

set v(n) = (s(n), 1)T

even v(2n) =

(
s(n)

1

)
=

(
1 0
0 1

)
v(n)

odd v(2n + 1) =

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

iterate  product of matrices

k-regular Sequence f (n)

square matrices M0, . . . , Mk−1

vectors u and w

k-linear representation

f (n) = uT Mn0Mn1 . . .Mn`−1
w

with standard k-ary expansion

n = (n`−1 . . . n1n0)k

k-Regular Sequences Daniel Krenn



Regular Sequences Asymptotics Decidability

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)

odd numbers: s(2n + 1) = s(n) + 1

vector-valued sequence

set v(n) = (s(n), 1)T

even v(2n) =

(
s(n)

1

)
=

(
1 0
0 1

)
v(n)

odd v(2n + 1) =

(
s(n) + 1

1

)
=

(
1 1
0 1

)
v(n)

iterate  product of matrices

k-regular Sequence f (n)

square matrices M0, . . . , Mk−1

vectors u and w

k-linear representation

f (n) = uT Mn0Mn1 . . .Mn`−1
w

with standard k-ary expansion

n = (n`−1 . . . n1n0)k

k-Regular Sequences Daniel Krenn



Regular Sequences Asymptotics Decidability

Some k-regular Sequences

largest power of k less than or equal to n

k-ary sum of digits

redundant systems:
number of representations in base k

k-automatic sequences

output sum sequences of transducers

k-recursive sequences

Stern’s Diatomic Sequence
Generalized Pascal’s Triangle
Number of Unbordered Factors in the Thue–Morse Sequence

completely k-additive functions

I
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Regular Sequences Asymptotics Decidability

Why should we care?

natural generalization
of automatic sequences
to infinite alphabet

( automatic
⇐⇒

only finitely many values

)
several alternative characterizations

recognizable series / non-commutative rational series
(Berstel–Reutenauer 2011)

rich arithmetic structure ( SageMath):
+. scalar multiplication, convolution
( module + ring = algebra)
shifts and linear subsequences
pointwise multiplication, partial sums, modulo
. . . and many more

computability

growth O(nc) for some constant c

z
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Regular Sequences Asymptotics Decidability

Pascal’s Rhombus

0

0 0

1

1 1 1

1 2 4 2 1

1 3 8 9 8 3 1

1 4 13 22 29 22 13 4 1

Recurrence

ri ,j =
ri−2,j +

ri−1,j−1+ri−1,j + ri−1,j+1

Question

Where are the
odd entries?
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Pascal’s Rhombus Modulo 2
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Pascal’s Rhombus: Recurrence Relations

Pascal’s rhombus R modulo 2

split into odd/even row and column indices:

X (even rows and columns)
 odd entries xn

Y, Z
 odd entries yn, zn

U (odd rows and columns)
 odd entries un

A = R, U = 0

Recurrences (Goldwasser–Klostermayer–Mays–Trapp 1999)

x2n = xn + zn x2n+1 = yn+1

y2n = xn−1 + zn y2n+1 = xn+1 + zn

z2n = 2xn z2n+1 = 2yn+1

R
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Pascal’s Rhombus: 2-regular Sequences

coefficient vector

vn = (xn, xn+1, yn+1, zn, zn+1)T

with v0 = (0, 1, 1, 0, 2)T

rewrite recurrence

v2n = M0vn
and

v2n+1 = M1vn

M0 =


1 0 0 1 0
0 0 1 0 0
0 1 0 1 0
2 0 0 0 0
0 0 2 0 0



M1 =


0 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 2 0 0
0 2 0 0 0



2-linear Representation

sequence

binary expansion n = (δ`−1 . . . δ1δ0)2
linear representation

vn = Mδ0Mδ1 . . .Mδ`−1
v0

 sequences xn, yn, zn are 2-regular

· · ·
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Some k-regular Sequences
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Some k-regular Sequences

s(n)− s(n − 1)

binary sum-of-digits s(n)

1
108

∑
r<m<n

s(r)1
104

∑
m<n

s(m)
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Some k-regular Sequences

s(n)− s(n − 1)

binary sum-of-digits s(n)

1
108

∑
r<m<n

s(r)

1
104

∑
m<n

s(m)

1

n

(∑
m<n

s(m)− 1

2
n log2 n

)
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Asymptotics & Fluctuations

properties of particular sequences:

binary sum of digits
(Delange 1975)

optimal digit expansions
(Grabner–Heuberger–Prodinger 2005,

Grabner–Heuberger 2006)

subword occurrences
(Leroy–Rigo–Stipulanti 2016)

. . . plenty more

classes of sequences:

divide-and-conquer algorithms
(Drmota–Szpankowski 2013,

Hwang–Janson–Tsai 2017)

output sums of transducers
(Heuberger–Kropf–Prodinger 2015)

non-commutative rational series
(Dumas–Lipmaa–Wallén 2007)

. . . many more

fluctuations, functional equations:

periodicity phenomena
(Flajolet–Grabner–Kirschenhofer–

Prodinger–Tichy 1994)

automatic sequences
(Allouche–Mendès France–

Peyrière 2000)

k-regular sequences
(via dilation equations)
(Dumas 2013, Dumas 2014)

@
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Asymptotics & Fluctuations
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Hwang–Janson–Tsai 2017)

output sums of transducers
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. . . many more

fluctuations, functional equations:

periodicity phenomena
(Flajolet–Grabner–Kirschenhofer–

Prodinger–Tichy 1994)

automatic sequences
(Allouche–Mendès France–

Peyrière 2000)

k-regular sequences
(via dilation equations)
(Dumas 2013, Dumas 2014)
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Asymptotics of Partial Sums

k-regular sequence f (m)

matrices M0, . . . , Mk−1 ∈ Cd×d

sequence (f (m))m≥0 of matrices
with f (km + r) = Mr f (m), f (0) = I

interested in asymptotic behaviour of F (n) =
∑

0≤m<n f (m)

Theorem (Dumas 2013)

(condensed statement out of the formulation in Heuberger–K–Prodinger 2016)

F (n) =
∑

λ∈σ(M0+···+Mk−1)
|λ|>ρ

nlogk λ
∑

0≤`≤m(λ)

(logk n)`Φλ,`({logk n})

+ O(nlogk R(log n)m̂)

1-periodic (Hölder) continuous functions Φλ,`
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Asymptotics of Partial Sums

k-regular sequence f (n) partial sums F (N) =
∑

n<N f (n)

Theorem (Heuberger–K–Prodinger 2018, Heuberger–K 2020)

F (N) =
∑

λ∈σ(M0+···+Mk−1)
|λ|>ρ

N logk λ
∑

0≤`<m(λ)

(logk N)`Φλ`({logk N})

+ O(N logk R(log N)m̂)

1-periodic (Hölder) continuous functions Φλ`

functional equation(
I− 1

ks
(M0+· · ·+Mk−1)

)
V(s) =

k−1∑
n=1

v(n)

ns
+

1

ks

k−1∑
r=0

Mr

∑
`≥1

(
−s

`

)( r

k

)`
V(s+`)

meromorphic continuation on the half plane <s > logk R
Fourier series Φλ`(u) =

∑
h∈Z ϕλ`h exp(2`πiu)

ϕλ`h =
(log k)`

`!
Res

((
f (0) + F(s)

)(
s − logk λ− 2hπi

log k

)`
s

, s = logk λ+
2hπi

log k

)
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Binary Sum-of-Digits Function: Analysis

eigenvalues etc.
C = M0 + M1 =

(
2 1
0 2

)
C has eigenvalue λ = 2 with multiplicity 2
joint spectral radius 1
‖Mr1 · · ·Mr`‖ = O

(
R`
)

for any R > 1

 analysis of summatory function:
S(N) = N(log2 N) Φ21({log2 N}) + N Φ20({log2 N})
1-periodic continuous functions Φ21 and Φ20

Φ21(u) = 1
2 via functional equation

no error term

recovering: Summatory Binary Sum-of-Digits (Delange 1975)

S(N) =
∑
n<N

s(n) = 1
2N log2 N + N Φ20({log2 N})

explicit Fourier coefficients of Φ20(u)
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Pascal’s Rhombus: The Odds

xn =
number of odd entries

in line n
in Pascal’s rhombus

Theorem (Heuberger–K–Prodinger 2018)

number of odd entries in the first N lines

XN =
∑
n≤N

xn = Nκ Φ(log2 N) + O(N log2 N)

κ = 2− log2(
√

17− 3) = 1.8325063835804 . . .

continuous and 1-periodic function Φ(u)

Fourier coefficients X

X
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Pascal’s Rhombus: The Fluctuation

fluctuation Φ(log2 n) vs. an/n
κ
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Dirichlet Series for Pascal’s Rhombus

numbers xn, yn, zn

of odd entries
in Pascal’s rhombus

in line n

Dirichlet series
X (s) =

∑
n≥1

xn
ns

Y (s) =
∑

n≥1
yn

ns

Z (s) =
∑

n≥1
zn
ns

Functional Equation System of Dirichlet Series

recurrence relations  X (s)
Y (s)
Z (s)

 =

 2−s 2−s 2−s

21−s 0 21−s

21−s 21−s 0

X (s)
Y (s)
Z (s)

+

 J
UN
K


JUNK contains∑

`≥1 . . .X (s + `)∑
`≥1 . . .Y (s + `)∑
`≥1 . . .Z (s + `)
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∑
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∑
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Mellin–Perron Summation Formula of Order 0

Mellin transform

H(s) =
∫∞
0

h(x)x s−1 dx
inverse transform
h(x) = 1

2πi

∫
Re(s)=ϑ

H(s)x−s ds

Dirichlet series

sequence (dn)n≥1
D(s) =

∑
n≥1

dn

ms

The Formula

DN −
dN

2
=

N−1∑
n=1

dn +
dN

2
=

1

2πi

∫
Re(s)=ϑ

D(s)
Ns

s
ds

coming up:

find poles and calculate residues of D(s)
transform contour of integration

. . . seems to give asymptotic behaviour

. . . and possibly Fourier coefficients

. . . but convergence issues
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Mellin–Perron Summation Formula of Order 0

Mellin transform

H(s) =
∫∞
0

h(x)x s−1 dx
inverse transform
h(x) = 1

2πi

∫
Re(s)=ϑ

H(s)x−s ds

Dirichlet series

sequence (dn)n≥1
D(s) =

∑
n≥1

dn

ms

The Formula

DN −
dN

2
=

N−1∑
n=1

dn +
dN

2
=
∑
n≥1

dn

[
0 ≤ n

N
< 1
]

+
dN

2

=
∑
n≥1

dn
1

2πi

∫
Re(s)=ϑ

( n

N

)−s ds

s

=
1

2πi

∫
Re(s)=ϑ

1

s

(∑
n≥1

dn

ns

)
Ns ds =

1

2πi

∫
Re(s)=ϑ

D(s)
Ns

s
ds

coming up:
find poles and calculate residues of D(s)
transform contour of integration

. . . seems to give asymptotic behaviour

. . . and possibly Fourier coefficients

. . . but convergence issues

∑
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Decidability

?
Decision Problem

problem with a yes/no answer

Recursively Solvable, Solvable, Decidable

for decision problem
there exists an algorithm (or Turing machine)

that unerringly solves it on all inputs
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problem with a yes/no answer

Recursively Solvable, Solvable, Decidable

for decision problem
there exists an algorithm (or Turing machine)

that unerringly solves it on all inputs
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Is Prime?

“Given a natural number,
is it prime?”

. . . decidable?

Integer Roots of Polynomials

“Given a univariate polynomial
with integer coefficients,
does it have an integer root?”

. . . decidable?

Rational Roots of Polynomials

“Given a univariate polynomial
with rational coefficients,
does it have a rational root?”

. . . decidable?

Roots of Multivariate Polynomials

“Given a multivariate polynomial p with integer coefficients,
do there exist natural numbers x1, x2, . . . , xt

such that p(x1, . . . , xt) = 0?”
. . . decidable?
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Is Prime?

“Given a natural number,
is it prime?”

. . . recursively solvable

Integer Roots of Polynomials

“Given a univariate polynomial
with integer coefficients,
does it have an integer root?”

. . . recursively solvable

Rational Roots of Polynomials

“Given a univariate polynomial
with rational coefficients,
does it have a rational root?”

. . . recursively solvable

Hilbert’s tenth problem; variant (MRDP 1949–1970)

“Given a multivariate polynomial p with integer coefficients,
do there exist natural numbers x1, x2, . . . , xt

such that p(x1, . . . , xt) = 0?”
. . . recursively unsolvable
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Equality of k-regular Sequences

Theorem (K–Shallit 2020)

“Given two k-regular sequences
(f (n))n≥0 and (g(n))n≥0 over Q,
does f (n) = g(n) for all n hold?”

. . . recursively solvable

Proof:

compute linear representation of f (n)− g(n)
apply minimization algorithm
rank 0 iff f (n)− g(n) = 0 for all n

=
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Zero Terms

Theorem (Allouche–Shallit 1992)

“Given a k-regular sequence over N0,
does it have a zero term?”

. . . recursively unsolvable

Proof:

multivariate polynomial p in t variables over Z
choose r ∈ N large enough
f (n) = p(|z |1 , |z |2 , . . . , |z |t)

z equals k r -representation of n
|z |d is number of occurrences of letter d in z

(f (n))n≥0 is k r -regular and consequently k-regular

0
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More (Un-)Decidability Results

recursively unsolvable:

Image of sequence equals N? . . . equals Z?
Images of two sequences coincide?
Sequences takes same value twice?
Sequence contains a square?
Sequence contains a palindrom?
Preimages can be recognized by a deterministic finite automaton?

(K–Shallit 2020)

quasi-universal k-regular sequences:
“no nontrivial property is decidable”
(Honkala 2021)

recursively solvable for k-automatic sequences:

Sequence contains a square?
Sequence contains a palindrom?
. . .

(e.g. Charlier–Rampersad–Shallit 2012)
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Undecidability of the Growth

Theorem (K–Shallit 2020)

“Given a k-regular sequence (f (n))n≥0 over Q,
is f (n) in O(nσ(log n)`)?”

. . . recursively unsolvable
O

Theorem (K–Shallit 2020)

“Given a k-regular sequence (f (n))n≥0 over N,
is f (n) in Ω

(
nσ(log n)`

)
?”

. . . recursively unsolvable

Theorem (K–Shallit 2020)

“Given a k-regular sequence (f (n))n≥0 over Q,
does f (n) have at least polynomial growth?”

. . . recursively unsolvable
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Theorem (K–Shallit 2020)
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is f (n) in O(nσ(log n)`)?”
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O

Theorem (K–Shallit 2020)

“Given a k-regular sequence (f (n))n≥0 over N,
is f (n) in Ω

(
nσ(log n)`

)
?”

. . . recursively unsolvable
Ω

Theorem (K–Shallit 2020)

“Given a k-regular sequence (f (n))n≥0 over Q,
does f (n) have at least polynomial growth?”

. . . recursively unsolvable
n2

k-Regular Sequences Daniel Krenn



Sequences
(k-regular sequences)

Asymptotics
(growth rates)

Computations
(algorithms)
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