k-Regular Sequences: Computations and Asymptotic Analysis

Daniel Krenn

May 26, 2023

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Example

$$s(26) =$$

Example

$$s(26) = s((11010)_2) = 3$$

Regul	ar Seo	quences
•00C	0000	00

Example

$$s(26) = s((11010)_2) = 3$$

Recursive Description

even numbers:	s(2n)=s(n)
odd numbers:	s(2n+1)=s(n)+1

Example

$$s(26) = s((11010)_2) = 3$$

Recursive Description

even numbers:	s(2n)=s(n)
odd numbers:	s(2n+1)=s(n)+1

generalizations:

$$s(2^{j}n) = s(n)$$

 $s(2^{j}n+r) = s(n) + s(r), \quad 0 \le r < 2^{j}$

Example

$$s(26) = s((11010)_2) = 3$$

Recursive Description

even numbers:	s(2n) = s(n)
odd numbers:	s(2n+1)=s(n)+1

generalizations:

$$s(2^{j}n) = s(n)$$

 $s(2^{j}n+r) = s(n) + s(r), \quad 0 \le r < 2^{j}$

Rewriting as Linear Combinations

 $s(2^j n + r) = 1 \cdot s(n) + c_{jr} \cdot 1$ for every $j \ge 0$, $0 \le r < 2^j$

k-regular Sequences

explicitly:

- there exist sequences $f_1(n), \ldots f_s(n)$ such that
- for all $j \ge 0$, $0 \le r < k^j$
- there exist c_1, \ldots, c_s
- with

$$f(k^j n + r) = c_1 f_1(n) + \cdots + c_s f_s(n)$$

k-regular Sequences

k-regular Sequence f(n)

$$\begin{aligned} &k\text{-kernel } \left\{ f \left(k^j n + r \right) \mid j \geq 0, \, 0 \leq r < k^j \right\} \\ & \text{ is contained in } \\ & \text{ finitely generated module } \end{aligned}$$

explicitly:

- there exist sequences $f_1(n), \ldots f_s(n)$ such that
- for all $j \ge 0$, $0 \le r < k^j$
- there exist c_1, \ldots, c_s

with

$$f(k^j n + r) = c_1 f_1(n) + \cdots + c_s f_s(n)$$

k-linear Representation

binary sum of digits s(n):

• recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set $v(n) = (s(n), 1)^T$

even $v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$ odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

k-linear Representation

binary sum of digits s(n):

recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set $v(n) = (s(n), 1)^T$ even $v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$ odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

● iterate ~→ product of matrices

k-linear Representation

binary sum of digits s(n):

• recurrence relations

even numbers: s(2n) = s(n)odd numbers: s(2n+1) = s(n) + 1

vector-valued sequence

set

 $v(n) = (s(n), 1)^T$

even
$$v(2n) = \begin{pmatrix} s(n) \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} v(n)$$

odd $v(2n+1) = \begin{pmatrix} s(n)+1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} v(n)$

• iterate ~> product of matrices

k-regular Sequence f(n)

- square matrices M_0, \ldots, M_{k-1}
- vectors *u* and *w*
- k-linear representation

$$f(n) = u^T M_{n_0} M_{n_1} \dots M_{n_{\ell-1}} w$$

with standard k-ary expansion $n = (n_{\ell-1} \dots n_1 n_0)_k$

Some k-regular Sequences

Regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems: number of representations in base k

mptotics

Decidability 000000

Some k-regular Sequences

Regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems: number of representations in base k
- k-automatic sequences
- output sum sequences of transducers

Some k-regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems: number of representations in base k
- k-automatic sequences
- output sum sequences of transducers
- k-recursive sequences
 - Stern's Diatomic Sequence
 - Generalized Pascal's Triangle
 - Number of Unbordered Factors in the Thue-Morse Sequence
- completely k-additive functions

Daniel Krenn

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)
- rich arithmetic structure (~> SageMath):
 - +. scalar multiplication, convolution
 (→ module + ring = algebra)
 - shifts and linear subsequences
 - pointwise multiplication, partial sums, modulo
 - ...and many more
- computability

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)
- rich arithmetic structure (~> SageMath):
 - +. scalar multiplication, convolution
 (→ module + ring = algebra)
 - shifts and linear subsequences
 - pointwise multiplication, partial sums, modulo
 - ...and many more
- computability
- growth $O(n^c)$ for some constant c

Regula	ar Seo	quences
0000	0000	00

Decidability 000000

Pascal's Rhombus

Regula	ar Seo	quences
0000	0000	00

Decidability 000000

Pascal's Rhombus

Regular Sequences	Asymptotics	Decidability
00000●000	00000000	000000
Pascal's Rhombus		

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Regular Sequences	Asymptotics
000000000	00000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Regular Sequences	
00000000	

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Regul	lar	Seq	uences
0000	00	•oc	0

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

$$\mathbf{r}_{i,j} = \frac{\mathbf{r}_{i-2,j} + \mathbf{r}_{i-1,j-1} + \mathbf{r}_{i-1,j} + \mathbf{r}_{i-1,j+1}}{\mathbf{r}_{i-1,j+1} + \mathbf{r}_{i-1,j+1}}$$

Pascal's Rhombus

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1}}$$

Decidability 000000

Pascal's Rhombus

Recurrence

$$r_{i,j} = \frac{r_{i-2,j} + r_{i-1,j-1} + r_{i-1,j} + r_{i-1,j+1}}{r_{i-1,j-1} + r_{i-1,j+1} + r_{i-1,j+1}}$$

Question

Where are the odd entries?

Pascal's Rhombus Modulo 2

- X (even rows and columns)
 → odd entries x_n
- \mathfrak{Y} , \mathfrak{Z} \rightsquigarrow odd entries y_n , z_n
- \mathfrak{U} (odd rows and columns) \rightsquigarrow odd entries u_n

•
$$\mathfrak{A} = \mathfrak{R}, \ \mathfrak{U} = 0$$

Recurrences (Goldwasser–Klostermayer–Mays–Trapp 1999)

$$\begin{aligned} x_{2n} &= x_n + z_n & x_{2n+1} = y_{n+1} \\ y_{2n} &= x_{n-1} + z_n & y_{2n+1} = x_{n+1} + z_n \\ z_{2n} &= 2x_n & z_{2n+1} = 2y_{n+1} \end{aligned}$$

Regular Sequences

Pascal's Rhombus: Recurrence Relations

Decidability 000000

Regular Sequences 00000000●	Asymptotics 00000000					ecidability 20000
Pascal's Rhombu	us: 2-regular Sequences					
 coefficient vect v_n = (x_n, x_n with v₀ = (rewrite recurrent 	$(z_{n+1}, y_{n+1}, z_n, z_{n+1})^T$ $(0, 1, 1, 0, 2)^T$	$M_0 = \begin{pmatrix} 1\\0\\0\\2\\0 \end{pmatrix}$	0 0 1 0 0	0 1 0 2	1 0 1 0 0	$\begin{pmatrix} 0\\0\\0\\0\\0\\0\end{pmatrix}$
and v	$v_{2n} = M_0 v_n$ $v_{2n+1} = M_1 v_n$	$M_1 = \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix}$	0 1 0 2	1 0 2 0	0 0 0 0	$\begin{pmatrix} 0\\1\\1\\0\\0 \end{pmatrix}$

Regular Sequences 00000000●	Asymptotics 00000000					ecidability 00000
Pascal's Rhom	nbus: 2-regular Sequences	5				
 coefficient v v_n = (x_n with v₀ rewrite recursion 	$(y_{n}, x_{n+1}, y_{n+1}, z_n, z_{n+1})^T = (0, 1, 1, 0, 2)^T$	$M_0 = \begin{pmatrix} 1\\0\\0\\2\\0 \end{pmatrix}$	0 0 1 0 0	0 1 0 2	1 0 1 0 0	$\begin{pmatrix} 0\\0\\0\\0\\0 \end{pmatrix}$
and	$v_{2n} = M_0 v_n$ $v_{2n+1} = M_1 v_n$	$M_1 = \begin{pmatrix} 0\\0\\1\\0\\0 \end{pmatrix}$	0 1 0 2	1 0 2 0	0 0 0 0	$\begin{pmatrix} 0\\1\\1\\0\\0 \end{pmatrix}$

2-linear Representation

- sequence
 - binary expansion $n = (\delta_{\ell-1} \dots \delta_1 \delta_0)_2$
 - linear representation

$$v_n = M_{\delta_0} M_{\delta_1} \dots M_{\delta_{\ell-1}} v_0$$

• \rightsquigarrow sequences x_n , y_n , z_n are 2-regular

Some *k*-regular Sequences

Some *k*-regular Sequences

Some *k*-regular Sequences

Asymptotics & Fluctuations

- properties of particular sequences:
 - binary sum of digits (Delange 1975)
 - optimal digit expansions (Grabner–Heuberger–Prodinger 2005, Grabner–Heuberger 2006)
 - subword occurrences
 - (Leroy-Rigo-Stipulanti 2016)
 - ... plenty more
- classes of sequences:
 - divide-and-conquer algorithms (Drmota-Szpankowski 2013,

Hwang–Janson–Tsai 2017)

- output sums of transducers (Heuberger-Kropf-Prodinger 2015)
- non-commutative rational series (Dumas-Lipmaa-Wallén 2007)
- ...many more

Asymptotics & Fluctuations

- properties of particular sequences:
 - binary sum of digits (Delange 1975)
 - optimal digit expansions (Grabner–Heuberger–Prodinger 2005, Grabner–Heuberger 2006)
 - subword occurrences (Leroy-Rigo-Stipulanti 2016)
 - ... plenty more
- classes of sequences:
 - divide-and-conquer algorithms (Drmota-Szpankowski 2013, Hwang-Janson-Tsai 2017)
 - output sums of transducers (Heuberger-Kropf-Prodinger 2015)
 - non-commutative rational series (Dumas-Lipmaa-Wallén 2007)
 - ...many more

- fluctuations, functional equations:
 - periodicity phenomena (Flajolet–Grabner–Kirschenhofer– Prodinger–Tichy 1994)
 - automatic sequences (Allouche–Mendès France– Peyrière 2000)
- k-regular sequences (via dilation equations)
 - (Dumas 2013, Dumas 2014)

Regular Sequences	Asymptotics	Decida
	00000000	

Asymptotics of Partial Sums

- k-regular sequence f(m)
 - matrices $M_0, \ldots, M_{k-1} \in \mathbb{C}^{d imes d}$
 - sequence $(f(m))_{m\geq 0}$ of matrices with $f(km + r) = M_r f(m)$, f(0) = I

• interested in asymptotic behaviour of $F(n) = \sum_{0 \le m \le n} f(m)$

Regular Sequences	Asymptotics	D
00000000	00000000	0

Asymptotics of Partial Sums

- k-regular sequence f(m)
 - matrices $M_0, \ldots, M_{k-1} \in \mathbb{C}^{d imes d}$
 - sequence $(f(m))_{m\geq 0}$ of matrices with $f(km+r) = M_r f(m)$, f(0) = I
- interested in asymptotic behaviour of $F(n) = \sum_{0 \le m \le n} f(m)$

Theorem (Dumas 2013)

(condensed statement out of the formulation in Heuberger-K-Prodinger 2016)

$$F(n) = \sum_{\substack{\lambda \in \sigma(M_0 + \dots + M_{k-1}) \\ |\lambda| > \rho}} n^{\log_k \lambda} \sum_{\substack{0 \le \ell \le m(\lambda) \\ 0 \le \ell \le m(\lambda)}} (\log_k n)^{\ell} \Phi_{\lambda,\ell}(\{\log_k n\}) + O(n^{\log_k R} (\log n)^{\widehat{m}})$$

• 1-periodic (Hölder) continuous functions $\Phi_{\lambda,\ell}$

Asymptotics	Decidability
00000000	000000

Asymptotics of Partial Sums

• *k*-regular sequence f(n)

• partial sums $F(N) = \sum_{n < N} f(n)$

Regular Sequences	Asymptotics	Decidability 000000
Asymptotics of Partia	Sume	

• k-regular sequence f(n) • partial sums F(N)

• partial sums
$$F(N) = \sum_{n < N} f(n)$$

Theorem (Heuberger-K-Prodinger 2018, Heuberger-K 2020)

$$F(N) = \sum_{\substack{\lambda \in \sigma(M_0 + \dots + M_{k-1}) \\ |\lambda| > \rho}} N^{\log_k \lambda} \sum_{0 \le \ell < m(\lambda)} (\log_k N)^{\ell} \Phi_{\lambda \ell}(\{\log_k N\}) + O(N^{\log_k R} (\log N)^{\widehat{m}})$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda\ell}$
- functional equation

$$\left(I-\frac{1}{k^s}(M_0+\cdots+M_{k-1})\right)\mathcal{V}(s)=\sum_{n=1}^{k-1}\frac{v(n)}{n^s}+\frac{1}{k^s}\sum_{r=0}^{k-1}M_r\sum_{\ell\geq 1}\binom{-s}{\ell}\binom{r}{k}^\ell\mathcal{V}(s+\ell)$$

• meromorphic continuation on the half plane $\Re s > \log_k R$

• Fourier series
$$\Phi_{\lambda\ell}(u) = \sum_{h \in \mathbb{Z}} \varphi_{\lambda\ell h} \exp(2\ell \pi i u)$$

$$\varphi_{\lambda\ell h} = \frac{(\log k)^{\ell}}{\ell!} \operatorname{Res}\left(\frac{(f(0) + \mathcal{F}(s))(s - \log_k \lambda - \frac{2h\pi i}{\log k})^c}{s}, s = \log_k \lambda + \frac{2h\pi i}{\log k}\right)$$

Asymptotics
00000000

Binary Sum-of-Digits Function: Analysis

- eigenvalues etc.
 - $C = M_0 + M_1 = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$
 - C has eigenvalue $\lambda = 2$ with multiplicity 2
 - joint spectral radius 1
 - $||M_{r_1} \cdots M_{r_\ell}|| = O(R^\ell)$ for any R > 1
- ~> analysis of summatory function:
 - $S(N) = N(\log_2 N) \Phi_{21}(\{\log_2 N\}) + N \Phi_{20}(\{\log_2 N\})$
 - 1-periodic continuous functions Φ_{21} and Φ_{20}
 - $\Phi_{21}(u) = \frac{1}{2}$ via functional equation
 - no error term

recovering: Summatory Binary Sum-of-Digits (Delange 1975)

$$S(N) = \sum_{n < N} s(n) = \frac{1}{2} N \log_2 N + N \Phi_{20}(\{\log_2 N\})$$

• explicit Fourier coefficients of $\Phi_{20}(u)$

Decidability 000000

Pascal's Rhombus: The Odds

• $x_n =$ in line nin Pascal's rhombus

Theorem (Heuberger-K-Prodinger 2018)

number of odd entries in the first N lines

$$X_N = \sum_{n \le N} x_n = N^{\kappa} \Phi(\log_2 N) + O(N \log_2 N)$$

- $\kappa = 2 \log_2(\sqrt{17} 3) = 1.8325063835804...$
- continuous and 1-periodic function $\Phi(u)$
- Fourier coefficients \checkmark

fluctuation $\Phi(\log_2 n)$ vs. a_n/n^{κ}

Regular Seque		
000000000		

Decidability 000000

Dirichlet Series for Pascal's Rhombus

 numbers x_n, y_n, z_n of odd entries in Pascal's rhombus in line n • Dirichlet series $X(s) = \sum_{n \ge 1} \frac{x_n}{n^s}$ $Y(s) = \sum_{n \ge 1} \frac{y_n}{n^s}$ $Z(s) = \sum_{n \ge 1} \frac{z_n}{n^s}$

egular		
0000	0000	

Decidability 000000

Dirichlet Series for Pascal's Rhombus

 numbers x_n, y_n, z_n of odd entries in Pascal's rhombus in line n • Dirichlet series $X(s) = \sum$

$$\begin{aligned} \mathcal{K}(s) &= \sum_{\substack{n \ge 1 \\ n^s}} \frac{x_n}{n^s} \\ \mathcal{Y}(s) &= \sum_{\substack{n \ge 1 \\ n \ge 1}} \frac{y_n}{n^s} \\ \mathcal{Z}(s) &= \sum_{\substack{n \ge 1 \\ n^s}} \frac{z_n}{n^s} \end{aligned}$$

UN

Functional Equation System of Dirichlet Series

• recurrence relations \rightsquigarrow

$$\begin{pmatrix} X(s) \\ Y(s) \\ Z(s) \end{pmatrix} = \begin{pmatrix} 2^{-s} & 2^{-s} & 2^{-s} \\ 2^{1-s} & 0 & 2^{1-s} \\ 2^{1-s} & 2^{1-s} & 0 \end{pmatrix} \begin{pmatrix} X(s) \\ Y(s) \\ Z(s) \end{pmatrix} +$$

JUNK contains

•
$$\sum_{\ell \ge 1} \dots X(s+\ell)$$

• $\sum_{\ell > 1} \dots Y(s+\ell)$

$$\sum_{\ell\geq 1}^{l\geq 1} \dots Z(s+\ell)$$

Asymptotics	Decidability
00000000	

Mellin-Perron Summation Formula of Order 0

• Mellin transform

•
$$H(s) = \int_0^\infty h(x) x^{s-1} dx$$

• inverse transform

$$h(x) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s) = \vartheta} H(s) x^{-s} \, \mathrm{d}s$$

The Formula

$$D_N - \frac{d_N}{2} = \sum_{n=1}^{N-1} d_n + \frac{d_N}{2} = \sum_{n\geq 1} d_n \left[0 \le \frac{n}{N} < 1 \right] + \frac{d_N}{2}$$
$$= \sum_{n\geq 1} d_n \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\vartheta} \left(\frac{n}{N} \right)^{-s} \frac{\mathrm{d}s}{s}$$
$$= \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\vartheta} \frac{1}{s} \left(\sum_{n\geq 1} \frac{d_n}{n^s} \right) N^s \, \mathrm{d}s = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\vartheta} D(s) \frac{N^s}{s} \, \mathrm{d}s$$

Regular Sequences	Asymptotics 0000000●	Decidability 000000
Mellin–Perron S	Summation Formula of Order 0	

- Mellin transform
 - $H(s) = \int_0^\infty h(x) x^{s-1} dx$
 - inverse transform

$$h(x) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \, \mathrm{d}s$$

• Dirichlet series

• sequence
$$(d_n)_{n \ge 1}$$

• $D(s) = \sum_{n \ge 1} \frac{d_n}{d_n}$

•
$$D(s) = \sum_{n\geq 1} \frac{a_n}{m^s}$$

The Formula

$$D_{N} - \frac{d_{N}}{2} = \sum_{n=1}^{N-1} d_{n} + \frac{d_{N}}{2} = \frac{1}{2\pi i} \int_{\text{Re}(s)=\vartheta} D(s) \frac{N^{s}}{s} \, \mathrm{d}s$$

- coming up:
 - find poles and calculate residues of D(s)
 - transform contour of integration

Regular Sequences	Asymptotics	Decidability
000000000	0000000●	000000
Mellin-Perron	Summation Formula of Order 0	

- Mellin transform
 - $H(s) = \int_0^\infty h(x) x^{s-1} dx$
 - inverse transform

$$h(x) = \frac{1}{2\pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \, \mathrm{d}s$$

Dirichlet series

• sequence
$$(d_n)_{n \ge 1}$$

• $D(s) = \sum_{n \ge 1} \frac{d_n}{d_n}$

•
$$D(s) = \sum_{n\geq 1} \frac{u_n}{m^s}$$

The Formula

$$D_N - \frac{d_N}{2} = \sum_{n=1}^{N-1} d_n + \frac{d_N}{2} = \frac{1}{2\pi i} \int_{\text{Re}(s)=\vartheta} D(s) \frac{N^s}{s} \, ds$$

- coming up:
 - find poles and calculate residues of D(s)
 - transform contour of integration
 - ... seems to give asymptotic behaviour
 - ... and possibly Fourier coefficients
 - ... but convergence issues

Decidability

Decision Problem

problem with a yes/no answer

Decidability

Decision Problem

problem with a yes/no answer

Recursively Solvable, Solvable, Decidable

for decision problem there exists an algorithm (or Turing machine) that unerringly solves it on all inputs

Is Prime?

"Given a natural number, is it prime?"

... decidable?

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?" ...decidable?

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?"decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers x_1, x_2, \ldots, x_t such that $p(x_1, \ldots, x_t) = 0$?"

... decidable?

Is Prime?

"Given a natural number, is it prime?"

... recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?" ...decidable?

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?"decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers x_1, x_2, \ldots, x_t such that $p(x_1, \ldots, x_t) = 0$?"

... decidable?

Is Prime?

"Given a natural number, is it prime?"

... recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?"decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers x_1, x_2, \ldots, x_t such that $p(x_1, \ldots, x_t) = 0$?"

... decidable?

Is Prime?

"Given a natural number, is it prime?"

... recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?" ...recursively solvable

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers x_1, x_2, \ldots, x_t such that $p(x_1, \ldots, x_t) = 0$?"

... decidable?

Is Prime?

"Given a natural number, is it prime?"

... recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?" ...recursively solvable

Hilbert's tenth problem; variant

(MRDP 1949-1970)

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers x_1, x_2, \ldots, x_t such that $p(x_1, \ldots, x_t) = 0$?"

... recursively unsolvable

Equality of k-regular Sequences

Theorem (K–Shallit 2020)

"Given two k-regular sequences $(f(n))_{n\geq 0}$ and $(g(n))_{n\geq 0}$ over \mathbb{Q} , does f(n) = g(n) for all n hold?"

... recursively solvable

Equality of k-regular Sequences

Theorem (K–Shallit 2020)

"Given two k-regular sequences $(f(n))_{n\geq 0}$ and $(g(n))_{n\geq 0}$ over \mathbb{Q} , does f(n) = g(n) for all n hold?" ... recursively solvable

- Proof:
 - compute linear representation of f(n) g(n)
 - apply minimization algorithm
 - rank 0 iff f(n) g(n) = 0 for all n

Zero Terms

Theorem (Allouche–Shallit 1992)

"Given a k-regular sequence over \mathbb{N}_0 , does it have a zero term?"

... recursively unsolvable

Zero Terms

Theorem (Allouche–Shallit 1992)

```
"Given a k-regular sequence over \mathbb{N}_0, does it have a zero term?"
```

... recursively unsolvable

• Proof:

- multivariate polynomial p in t variables over $\mathbb Z$
- choose $r \in \mathbb{N}$ large enough
- $f(n) = p(|z|_1, |z|_2, ..., |z|_t)$
 - z equals k^r-representation of n
 - $|z|_d$ is number of occurrences of letter d in z
- $(f(n))_{n\geq 0}$ is k^r -regular and consequently k-regular

Decidability 000000

More (Un-)Decidability Results

- recursively unsolvable:
 - Image of sequence equals $\mathbb{N}?$...equals $\mathbb{Z}?$
 - Images of two sequences coincide?
 - Sequences takes same value twice?
 - Sequence contains a square?
 - Sequence contains a palindrom?
 - Preimages can be recognized by a deterministic finite automaton?

(K–Shallit 2020)

Decidability 000000

More (Un-)Decidability Results

- recursively unsolvable:
 - Image of sequence equals $\mathbb{N}?$...equals $\mathbb{Z}?$
 - Images of two sequences coincide?
 - Sequences takes same value twice?
 - Sequence contains a square?
 - Sequence contains a palindrom?
 - Preimages can be recognized by a deterministic finite automaton?

(K–Shallit 2020)

 quasi-universal k-regular sequences:
 "no nontrivial property is decidable" (Honkala 2021)

Decidability 000000

More (Un-)Decidability Results

- recursively unsolvable:
 - \bullet Image of sequence equals $\mathbb{N}?$...equals $\mathbb{Z}?$
 - Images of two sequences coincide?
 - Sequences takes same value twice?
 - Sequence contains a square?
 - Sequence contains a palindrom?
 - Preimages can be recognized by a deterministic finite automaton?

```
(K–Shallit 2020)
```

- quasi-universal k-regular sequences:
 "no nontrivial property is decidable"
 (Honkala 2021)
- recursively solvable for k-automatic sequences:
 - Sequence contains a square?
 - Sequence contains a palindrom?
 - . . .
 - (e.g. Charlier-Rampersad-Shallit 2012)

Undecidability of the Growth

Theorem (K–Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{Q} , is f(n) in $O(n^{\sigma}(\log n)^{\ell})$?" ... recursively unsolvable

Undecidability of the Growth

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{Q} , is f(n) in $O(n^{\sigma}(\log n)^{\ell})$?"

Theorem (K–Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{N} , is f(n) in $\Omega(n^{\sigma}(\log n)^{\ell})$?"

... recursively unsolvable

Undecidability of the Growth

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{Q} , is f(n) in $O(n^{\sigma}(\log n)^{\ell})$?" ... recursively unsolvable

Theorem (K–Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{N} , is f(n) in $\Omega(n^{\sigma}(\log n)^{\ell})$?" ... recursively unsolvable

Theorem (K–Shallit 2020)

"Given a k-regular sequence $(f(n))_{n\geq 0}$ over \mathbb{Q} , does f(n) have at least polynomial growth?"recursively unsolvable

Sequences (k-regular sequences)

Asymptotics (growth rates)

Computations (algorithms)

