k-Regular Sequences:

Computations and Asymptotic Analysis

Daniel Krenn

May 26, 2023

Binary Sum-of-Digits Function

Example

$s(26)=$

Binary Sum-of-Digits Function

Example

$$
s(26)=s\left((11010)_{2}\right)=3
$$

Binary Sum-of-Digits Function

Example

$$
s(26)=s\left((11010)_{2}\right)=3
$$

Recursive Description

even numbers:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

odd numbers:

Binary Sum-of-Digits Function

Example

$$
s(26)=s\left((11010)_{2}\right)=3
$$

Recursive Description

even numbers:

$$
\begin{aligned}
s(2 n) & =s(n) \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

odd numbers:
generalizations:

$$
\begin{aligned}
s\left(2^{j} n\right) & =s(n) \\
s\left(2^{j} n+r\right) & =s(n)+s(r), \quad 0 \leq r<2^{j}
\end{aligned}
$$

Binary Sum-of-Digits Function

Example

$$
s(26)=s\left((11010)_{2}\right)=3
$$

Recursive Description

even numbers: $\quad s(2 n)=s(n)$
odd numbers:

$$
s(2 n+1)=s(n)+1
$$

generalizations:

$$
\begin{aligned}
s\left(2^{j} n\right) & =s(n) \\
s\left(2^{j} n+r\right) & =s(n)+s(r), \quad 0 \leq r<2^{j}
\end{aligned}
$$

Rewriting as Linear Combinations

$$
s\left(2^{j} n+r\right)=1 \cdot s(n)+c_{j r} \cdot 1 \text { for every } j \geq 0,0 \leq r<2^{j}
$$

k-regular Sequences

explicitly:

- there exist sequences $f_{1}(n), \ldots f_{s}(n)$ such that
- for all $j \geq 0,0 \leq r<k^{j}$
- there exist c_{1}, \ldots, c_{s}
- with

$$
f\left(k^{j} n+r\right)=c_{1} f_{1}(n)+\cdots+c_{s} f_{s}(n)
$$

k-regular Sequences

k-regular Sequence $f(n)$

$$
\begin{gathered}
k \text {-kernel }\left\{f\left(k^{j} n+r\right) \mid j \geq 0,0 \leq r<k^{j}\right\} \\
\text { is contained in } \\
\text { finitely generated module }
\end{gathered}
$$

explicitly:

- there exist sequences $f_{1}(n), \ldots f_{s}(n)$ such that
- for all $j \geq 0,0 \leq r<k^{j}$
- there exist c_{1}, \ldots, c_{s}
- with

$$
f\left(k^{j} n+r\right)=c_{1} f_{1}(n)+\cdots+c_{s} f_{s}(n)
$$

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
$\begin{aligned} & \text { even numbers: } & s(2 n) & =s(n) \\ & \text { odd numbers: } & s(2 n+1) & =s(n)+1\end{aligned}$

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
even numbers: $\quad s(2 n)=s(n)$
odd numbers: $\quad s(2 n+1)=s(n)+1$
- vector-valued sequence
set $\quad v(n)=(s(n), 1)^{T}$
even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$

k-linear Representation

binary sum of digits $s(n)$:

- recurrence relations
$\begin{array}{lrl} & \text { even numbers: } & s(2 n)\end{array}=s(n)$
- vector-valued sequence
set $\quad v(n)=(s(n), 1)^{T}$
even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$
- iterate \rightsquigarrow product of matrices

k-linear Representation

k-regular Sequence $f(n)$

- square matrices M_{0}, \ldots, M_{k-1}
- vectors u and w
- k-linear representation

$$
f(n)=u^{T} M_{n_{0}} M_{n_{1}} \ldots M_{n_{\ell-1}} w
$$

with standard k-ary expansion

$$
n=\left(n_{\ell-1} \ldots n_{1} n_{0}\right)_{k}
$$

set

$$
v(n)=(s(n), 1)^{T}
$$

even $\quad v(2 n)=\binom{s(n)}{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) v(n)$
odd $\quad v(2 n+1)=\binom{s(n)+1}{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) v(n)$

- iterate \rightsquigarrow product of matrices

Some k-regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems:
number of representations in base k

Some k-regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems:
number of representations in base k
- k-automatic sequences
- output sum sequences of transducers

Some k-regular Sequences

- largest power of k less than or equal to n
- k-ary sum of digits
- redundant systems:
number of representations in base k

- k-automatic sequences
- output sum sequences of transducers
- k-recursive sequences
- Stern's Diatomic Sequence
- Generalized Pascal's Triangle
- Number of Unbordered Factors in the Thue-Morse Sequence
- completely k-additive functions

Why should we care?

- natural generalization of automatic sequences to infinite alphabet

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)

Why should we care?

- natural generalization of automatic sequences to infinite alphabet

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)
- rich arithmetic structure (\rightsquigarrow SageMath):
- +. scalar multiplication, convolution
$(\rightsquigarrow$ module + ring $=$ algebra $)$
- shifts and linear subsequences
- pointwise multiplication, partial sums, modulo
- ... and many more
- computability

Why should we care?

- natural generalization of automatic sequences to infinite alphabet

- several alternative characterizations
- recognizable series / non-commutative rational series (Berstel-Reutenauer 2011)
- rich arithmetic structure (\rightsquigarrow SageMath):
- +. scalar multiplication, convolution
$(\rightsquigarrow$ module + ring $=$ algebra $)$
- shifts and linear subsequences
- pointwise multiplication, partial sums, modulo
- ... and many more
- computability
- growth $O\left(n^{c}\right)$ for some constant c

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & & \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13
\end{array}\right) 4 \begin{array}{lll}
1
\end{array}
$$

Pascal's Rhombus

$$
\begin{aligned}
& 1 \\
& 111 \\
& 12421 \\
& \begin{array}{lllllll}
1 & 3 & 8 & 9 & 8 & 3 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 & 1
\end{array}
\end{aligned}
$$

Pascal's Rhombus

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 0 & & & \\
& & & 0 & 1 & 0 & & \\
& & & 1 & 1 & 1 & & \\
& & & 1 & 2 & 4 & 2 & 1 \\
& & & & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & 1 & \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13 \\
1 & 4 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& 0 & & 1 & & & & \\
& 0 & 0 & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 2 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & 0 & 1 & & & \\
& & 0 & 1 & 1 & 1 & & \\
& & & & & & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & 1 & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & 1 & 0 & & \\
& & & 1 & 1 & 1 & 0 & \\
& & & 1 & 2 & 4 & 2 & 1 \\
& & & & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & 0 & \\
& & & 1 & 1 & 1 & 0 & 0 \\
& & & 1 & 2 & 4 & 2 & 1 \\
& & & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

$$
\begin{array}{ccccccccc}
& 0 & & 1 & 1 & 1 & & & \\
0 & 0 & 1 & 2 & 4 & 2 & 1 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 & \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

\[

\]

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 2 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & & 1 & & \\
& & & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & & & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13 \\
1 & 4 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

$$
\begin{array}{cccccccc}
& & & 1 & 1 & 1 & & 0 \\
& & 1 & 2 & 4 & 2 & 1 & 0 \\
& & 1 & 0 \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & & 1 & 2 & 4 & 2 & 1 \\
& & 1 & & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 2 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 2 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
1 & 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 2 & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\left.\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & 1 & 2 & 4 & 2 & 1 & \\
& & 1 & 3 & 8 & 9 & 8 & 3 \\
& 1 & 1 & \\
& 1 & 3 & & & & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{aligned}
& 1 \\
& 1 \quad 1 \quad 1 \\
& \begin{array}{llllll}
1 & 2 & 4 & 2 & 1 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 3 & 8 & 9 & 8 & 3 & 1 & 0
\end{array} \\
& \begin{array}{lllllllll}
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 & 1
\end{array}
\end{aligned}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

\[

\]

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

$$
\begin{array}{cccccccc}
& & & & 1 & & & \\
& & & 1 & 1 & 1 & & \\
& & & 1 & 2 & 4 & 2 & 1 \\
& & & & \\
& 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
& & & & \\
1 & 4 & 13 & 22 & 29 & 22 & 13 & 4 \\
& 1
\end{array}
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Pascal's Rhombus

1

$$
\left.\begin{array}{ccccccccc}
& & & 1 & 1 & 1 & & & \\
& & 1 & 2 & 4 & 2 & 1 & & \\
& & 1 & 3 & 8 & 9 & 8 & 3 & 1 \\
& 1 & 4 & 13 & 22 & 29 & 22 & 13 & 4
\end{array}\right)
$$

Recurrence

$$
r_{i, j}=\begin{gathered}
r_{i-2, j}+ \\
r_{i-1, j-1}+r_{i-1, j}+r_{i-1, j+1}
\end{gathered}
$$

Where are the odd entries?

Pascal's Rhombus Modulo 2

Pascal's Rhombus: Recurrence Relations

- Pascal's rhombus \mathfrak{R} modulo 2
- split into odd/even row and column indices:
- \mathfrak{X} (even rows and columns)
\rightsquigarrow odd entries x_{n}
- $\mathfrak{Y}, \mathfrak{Z}$
\rightsquigarrow odd entries y_{n}, z_{n}
- \mathfrak{U} (odd rows and columns)
\rightsquigarrow odd entries u_{n}
- $\mathfrak{A}=\mathfrak{R}, \mathfrak{U}=0$

Recurrences (Goldwasser-Klostermayer-Mays-Trapp 1999)

$$
\begin{array}{ll}
x_{2 n}=x_{n}+z_{n} & x_{2 n+1}=y_{n+1} \\
y_{2 n}=x_{n-1}+z_{n} & y_{2 n+1}=x_{n+1}+z_{n} \\
z_{2 n}=2 x_{n} & z_{2 n+1}=2 y_{n+1}
\end{array}
$$

Pascal's Rhombus: 2-regular Sequences

- coefficient vector
- $v_{n}=\left(x_{n}, x_{n+1}, y_{n+1}, z_{n}, z_{n+1}\right)^{T}$
- with $v_{0}=(0,1,1,0,2)^{T}$
- rewrite recurrence
and

$$
v_{2 n+1}=M_{1} v_{n}
$$

$$
M_{0}=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0
\end{array}\right)
$$

$$
M_{1}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 0 & 0
\end{array}\right)
$$

Pascal's Rhombus: 2-regular Sequences

- coefficient vector

> - $v_{n}=\left(x_{n}, x_{n+1}, y_{n+1}, z_{n}, z_{n+1}\right)^{T}$
> - with $v_{0}=(0,1,1,0,2)^{T}$

- rewrite recurrence

$$
M_{0}=\left(\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0
\end{array}\right)
$$

$$
v_{2 n}=M_{0} v_{n}
$$

$$
v_{2 n+1}=M_{1} v_{n}
$$

$$
M_{1}=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & 0 & 0
\end{array}\right)
$$

2-linear Representation

- sequence
- binary expansion $n=\left(\delta_{\ell-1} \ldots \delta_{1} \delta_{0}\right)_{2}$
- linear representation

$$
v_{n}=M_{\delta_{0}} M_{\delta_{1}} \ldots M_{\delta_{\ell-1}} v_{0}
$$

- \rightsquigarrow sequences x_{n}, y_{n}, z_{n} are 2-regular

Some k-regular Sequences

Some k-regular Sequences

Some k-regular Sequences

Asymptotics \& Fluctuations

- properties of particular sequences:
- binary sum of digits
(Delange 1975)
- optimal digit expansions
(Grabner-Heuberger-Prodinger 2005,
Grabner-Heuberger 2006)
- subword occurrences
(Leroy-Rigo-Stipulanti 2016)
- . . . plenty more
- classes of sequences:
- divide-and-conquer algorithms
(Drmota-Szpankowski 2013,
Hwang-Janson-Tsai 2017)
- output sums of transducers
(Heuberger-Kropf-Prodinger 2015)
- non-commutative rational series
(Dumas-Lipmaa-Wallén 2007)
- ... many more

Asymptotics \& Fluctuations

- properties of particular sequences:
- binary sum of digits
(Delange 1975)
- optimal digit expansions
(Grabner-Heuberger-Prodinger 2005,
Grabner-Heuberger 2006)
- subword occurrences
(Leroy-Rigo-Stipulanti 2016)
- . . . plenty more
- classes of sequences:
- divide-and-conquer algorithms
(Drmota-Szpankowski 2013,
Hwang-Janson-Tsai 2017)
- output sums of transducers
(Heuberger-Kropf-Prodinger 2015)
- non-commutative rational series
(Dumas-Lipmaa-Wallén 2007)
- ... many more
- fluctuations, functional equations:
- periodicity phenomena (Flajolet-Grabner-Kirschenhofer-Prodinger-Tichy 1994)
- automatic sequences (Allouche-Mendès FrancePeyrière 2000)
- k-regular sequences (via dilation equations)
(Dumas 2013, Dumas 2014)

Asymptotics of Partial Sums

- k-regular sequence $f(m)$
- matrices $M_{0}, \ldots, M_{k-1} \in \mathbb{C}^{d \times d}$
- sequence $(f(m))_{m \geq 0}$ of matrices with $f(k m+r)=M_{r} f(m), f(0)=I$
- interested in asymptotic behaviour of $F(n)=\sum_{0 \leq m<n} f(m)$

Asymptotics of Partial Sums

- k-regular sequence $f(m)$
- matrices $M_{0}, \ldots, M_{k-1} \in \mathbb{C}^{d \times d}$
- sequence $(f(m))_{m \geq 0}$ of matrices with $f(k m+r)=M_{r} f(m), f(0)=I$
- interested in asymptotic behaviour of $F(n)=\sum_{0 \leq m<n} f(m)$

Theorem (Dumas 2013)

(condensed statement out of the formulation in Heuberger-K-Prodinger 2016)

$$
\begin{aligned}
F(n)=\sum_{\substack{\lambda \in \sigma\left(M_{0}+\cdots+M_{k-1}\right) \\
|\lambda|>\rho}} n^{\log _{k} \lambda} \sum_{0 \leq \ell \leq m(\lambda)}\left(\log _{k} n\right)^{\ell} \Phi_{\lambda, \ell}\left(\left\{\log _{k} n\right\}\right) \\
+O\left(n^{\log _{k} R}(\log n)^{\widehat{m}}\right)
\end{aligned}
$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda, \ell}$

Asymptotics of Partial Sums

- k-regular sequence $f(n)$
- partial sums $F(N)=\sum_{n<N} f(n)$

Asymptotics of Partial Sums

- k-regular sequence $f(n)$
- partial sums $F(N)=\sum_{n<N} f(n)$

Theorem (Heuberger-K-Prodinger 2018, Heuberger-K 2020)

$$
\begin{aligned}
F(N)=\sum_{\substack{\lambda \in \sigma\left(M_{0}+\cdots+M_{k-1}\right) \\
|\lambda|>\rho}} N^{\log _{k} \lambda} \sum_{0 \leq \ell<m(\lambda)}\left(\log _{k} N\right)^{\ell} \Phi_{\lambda \ell}\left(\left\{\log _{k} N\right\}\right) \\
+O\left(N^{\log _{k} R}(\log N)^{\widehat{m}}\right)
\end{aligned}
$$

- 1-periodic (Hölder) continuous functions $\Phi_{\lambda \ell}$
- functional equation

$$
\left(I-\frac{1}{k^{s}}\left(M_{0}+\cdots+M_{k-1}\right)\right) \mathcal{V}(s)=\sum_{n=1}^{k-1} \frac{v(n)}{n^{s}}+\frac{1}{k^{s}} \sum_{r=0}^{k-1} M_{r} \sum_{\ell \geq 1}\binom{-s}{\ell}\left(\frac{r}{k}\right)^{\ell} \mathcal{V}(s+\ell)
$$

- meromorphic continuation on the half plane $\Re s>\log _{k} R$
- Fourier series $\Phi_{\lambda \ell}(u)=\sum_{h \in \mathbb{Z}} \varphi_{\lambda \ell h} \exp (2 \ell \pi i u)$
$\varphi_{\lambda \ell h}=\frac{(\log k)^{\ell}}{\ell!} \operatorname{Res}\left(\frac{(f(0)+\mathcal{F}(s))\left(s-\log _{k} \lambda-\frac{2 h \pi i}{\log k}\right)^{\ell}}{s}, s=\log _{k} \lambda+\frac{2 h \pi i}{\log k}\right)$

Binary Sum-of-Digits Function: Analysis

- eigenvalues etc.
- $C=M_{0}+M_{1}=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$
- C has eigenvalue $\lambda=2$ with multiplicity 2
- joint spectral radius 1
- $\left\|M_{r_{1}} \cdots M_{r_{e}}\right\|=O\left(R^{\ell}\right)$ for any $R>1$
- \rightsquigarrow analysis of summatory function:
- $S(N)=N\left(\log _{2} N\right) \Phi_{21}\left(\left\{\log _{2} N\right\}\right)+N \Phi_{20}\left(\left\{\log _{2} N\right\}\right)$
- 1-periodic continuous functions Φ_{21} and Φ_{20}
- $\Phi_{21}(u)=\frac{1}{2}$ via functional equation
- no error term
- recovering: Summatory Binary Sum-of-Digits (Delange 1975)

$$
S(N)=\sum_{n<N} s(n)=\frac{1}{2} N \log _{2} N+N \Phi_{20}\left(\left\{\log _{2} N\right\}\right)
$$

- explicit Fourier coefficients of $\Phi_{20}(u)$

Pascal's Rhombus: The Odds

number of odd entries

- $x_{n}=\quad$ in line n in Pascal's rhombus

Theorem (Heuberger-K-Prodinger 2018)
number of odd entries in the first N lines

$$
X_{N}=\sum_{n \leq N} x_{n}=N^{\kappa} \Phi\left(\log _{2} N\right)+O\left(N \log _{2} N\right)
$$

- $\kappa=2-\log _{2}(\sqrt{17}-3)=1.8325063835804 \ldots$
- continuous and 1-periodic function $\Phi(u)$
- Fourier coefficients \checkmark

Pascal's Rhombus: The Fluctuation

Dirichlet Series for Pascal's Rhombus

- numbers x_{n}, y_{n}, z_{n} of odd entries in Pascal's rhombus in line n
- Dirichlet series

$$
\begin{aligned}
& X(s)=\sum_{n \geq 1} \frac{X_{n}}{n^{s}} \\
& Y(s)=\sum_{n \geq 1} \frac{y_{n}}{n^{s}} \\
& Z(s)=\sum_{n \geq 1} \frac{z_{n}}{n^{s}}
\end{aligned}
$$

Dirichlet Series for Pascal's Rhombus

- numbers x_{n}, y_{n}, z_{n} of odd entries in Pascal's rhombus in line n
- Dirichlet series

$$
\begin{aligned}
& X(s)=\sum_{n \geq 1} \frac{x_{n}}{n^{s}} \\
& Y(s)=\sum_{n \geq 1} \frac{y_{n}}{n^{s}} \\
& \quad Z(s)=\sum_{n \geq 1} \frac{z_{n}}{n^{s}}
\end{aligned}
$$

Functional Equation System of Dirichlet Series

- recurrence relations \rightsquigarrow

$$
\left(\begin{array}{c}
X(s) \\
Y(s) \\
Z(s)
\end{array}\right)=\left(\begin{array}{ccc}
2^{-s} & 2^{-s} & 2^{-s} \\
2^{1-s} & 0 & 2^{1-s} \\
2^{1-s} & 2^{1-s} & 0
\end{array}\right)\left(\begin{array}{c}
X(s) \\
Y(s) \\
Z(s)
\end{array}\right)+\left(\begin{array}{c}
J \\
U N \\
K
\end{array}\right)
$$

- JUNK contains

$$
\begin{aligned}
& \text { - } \sum_{\ell \geq 1} \ldots X(s+\ell) \\
& \text { - } \sum_{\ell \geq 1} \cdots Y(s+\ell) \\
& \text { - } \sum_{\ell \geq 1} \ldots Z(s+\ell)
\end{aligned}
$$

Mellin-Perron Summation Formula of Order 0

- Mellin transform
- $H(s)=\int_{0}^{\infty} h(x) x^{s-1} \mathrm{~d} x$
- inverse transform

$$
h(x)=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \mathrm{~d} s
$$

Mellin-Perron Summation Formula of Order 0

- Mellin transform
- $H(s)=\int_{0}^{\infty} h(x) x^{s-1} \mathrm{~d} x$
- inverse transform

$$
h(x)=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \mathrm{~d} s
$$

- Dirichlet series
- sequence $\left(d_{n}\right)_{n>1}$
- $D(s)=\sum_{n \geq 1} \frac{d_{n}}{m^{s}}$

The Formula

$$
\begin{aligned}
D_{N}-\frac{d_{N}}{2} & =\sum_{n=1}^{N-1} d_{n}+\frac{d_{N}}{2}=\sum_{n \geq 1} d_{n}\left[0 \leq \frac{n}{N}<1\right]+\frac{d_{N}}{2} \\
& =\sum_{n \geq 1} d_{n} \frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta}\left(\frac{n}{N}\right)^{-s} \frac{d s}{s} \\
& =\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} \frac{1}{s}\left(\sum_{n \geq 1} \frac{d_{n}}{n^{s}}\right) N^{s} \mathrm{~d} s=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} D(s) \frac{N^{s}}{s} d s
\end{aligned}
$$

Mellin-Perron Summation Formula of Order 0

- Mellin transform
- $H(s)=\int_{0}^{\infty} h(x) x^{s-1} \mathrm{~d} x$
- inverse transform

$$
h(x)=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \mathrm{~d} s
$$

- Dirichlet series
- sequence $\left(d_{n}\right)_{n>1}$
- $D(s)=\sum_{n \geq 1} \frac{d_{n}}{m^{s}}$

The Formula

$$
D_{N}-\frac{d_{N}}{2}=\sum_{n=1}^{N-1} d_{n}+\frac{d_{N}}{2}=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} D(s) \frac{N^{s}}{s} \mathrm{~d} s
$$

- coming up:
- find poles and calculate residues of $D(s)$
- transform contour of integration

Mellin-Perron Summation Formula of Order 0

- Mellin transform
- $H(s)=\int_{0}^{\infty} h(x) x^{s-1} \mathrm{~d} x$
- inverse transform

$$
h(x)=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} H(s) x^{-s} \mathrm{~d} s
$$

- Dirichlet series
- sequence $\left(d_{n}\right)_{n \geq 1}$
- $D(s)=\sum_{n \geq 1} \frac{d_{n}}{m^{s}}$

The Formula

$$
D_{N}-\frac{d_{N}}{2}=\sum_{n=1}^{N-1} d_{n}+\frac{d_{N}}{2}=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\vartheta} D(s) \frac{N^{s}}{s} \mathrm{~d} s
$$

- coming up:
- find poles and calculate residues of $D(s)$
- transform contour of integration
- ...seems to give asymptotic behaviour
... and possibly Fourier coefficients
- ... but convergence issues

Decidability

Decision Problem
 problem with a yes/no answer

Decidability

Decision Problem

problem with a yes/no answer

Recursively Solvable, Solvable, Decidable

for decision problem
there exists an algorithm (or Turing machine) that unerringly solves it on all inputs

Is Prime?

"Given a natural number, is it prime?"
. . . decidable?

Integer Roots of Polynomials
"Given a univariate polynomial with integer coefficients, does it have an integer root?"
. . . decidable?

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?" . . . decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers $x_{1}, x_{2}, \ldots, x_{t}$ such that $p\left(x_{1}, \ldots, x_{t}\right)=0$?"

Is Prime?

"Given a natural number, is it prime?"

. . . recursively solvable

Integer Roots of Polynomials
"Given a univariate polynomial with integer coefficients, does it have an integer root?"
. . . decidable?

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?" . . . decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers $x_{1}, x_{2}, \ldots, x_{t}$ such that $p\left(x_{1}, \ldots, x_{t}\right)=0$?"

Is Prime?

"Given a natural number, is it prime?"

.. . recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"

. . . recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?" . . . decidable?

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers $x_{1}, x_{2}, \ldots, x_{t}$ such that $p\left(x_{1}, \ldots, x_{t}\right)=0$?"

Is Prime?

"Given a natural number, is it prime?"

.. . recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"

. . . recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?"
. . . recursively solvable

Roots of Multivariate Polynomials

"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers $x_{1}, x_{2}, \ldots, x_{t}$ such that $p\left(x_{1}, \ldots, x_{t}\right)=0$?"

Is Prime?

"Given a natural number, is it prime?"

.. . recursively solvable

Integer Roots of Polynomials

"Given a univariate polynomial with integer coefficients, does it have an integer root?"
. . . recursively solvable

Rational Roots of Polynomials

"Given a univariate polynomial with rational coefficients, does it have a rational root?"
. . . recursively solvable
"Given a multivariate polynomial p with integer coefficients, do there exist natural numbers $x_{1}, x_{2}, \ldots, x_{t}$ such that $p\left(x_{1}, \ldots, x_{t}\right)=0$?"
. . . recursively unsolvable

Equality of k-regular Sequences

Theorem (K-Shallit 2020)

"Given two k-regular sequences $(f(n))_{n \geq 0}$ and $(g(n))_{n \geq 0}$ over \mathbb{Q}, does $f(n)=g(n)$ for all n hold?"
... recursively solvable

Equality of k-regular Sequences

Theorem (K-Shallit 2020)

"Given two k-regular sequences $(f(n))_{n \geq 0}$ and $(g(n))_{n \geq 0}$ over \mathbb{Q}, does $f(n)=g(n)$ for all n hold?"
... recursively solvable

- Proof:
- compute linear representation of $f(n)-g(n)$
- apply minimization algorithm
- rank 0 iff $f(n)-g(n)=0$ for all n

Zero Terms

Theorem (Allouche-Shallit 1992)
"Given a k-regular sequence over \mathbb{N}_{0}, does it have a zero term?"
. . . recursively unsolvable

Zero Terms

Theorem (Allouche-Shallit 1992)

"Given a k-regular sequence over \mathbb{N}_{0}, does it have a zero term?"
. . . recursively unsolvable

- Proof:
- multivariate polynomial p in t variables over \mathbb{Z}
- choose $r \in \mathbb{N}$ large enough
- $f(n)=p\left(|z|_{1},|z|_{2}, \ldots,|z|_{t}\right)$
- z equals k^{r}-representation of n
- $|z|_{d}$ is number of occurrences of letter d in z
- $(f(n))_{n \geq 0}$ is k^{r}-regular and consequently k-regular

More (Un-)Decidability Results

- recursively unsolvable:
- Image of sequence equals \mathbb{N} ? ...equals \mathbb{Z} ?
- Images of two sequences coincide?
- Sequences takes same value twice?
- Sequence contains a square?
- Sequence contains a palindrom?
- Preimages can be recognized by a deterministic finite automaton?
(K-Shallit 2020)

More (Un-)Decidability Results

- recursively unsolvable:
- Image of sequence equals \mathbb{N} ? ... equals \mathbb{Z} ?
- Images of two sequences coincide?
- Sequences takes same value twice?
- Sequence contains a square?
- Sequence contains a palindrom?
- Preimages can be recognized by a deterministic finite automaton?
(K-Shallit 2020)
- quasi-universal k-regular sequences:
"no nontrivial property is decidable"
(Honkala 2021)

More (Un-)Decidability Results

- recursively unsolvable:
- Image of sequence equals \mathbb{N} ? ... equals \mathbb{Z} ?
- Images of two sequences coincide?
- Sequences takes same value twice?
- Sequence contains a square?
- Sequence contains a palindrom?
- Preimages can be recognized by a deterministic finite automaton?
(K-Shallit 2020)
- quasi-universal k-regular sequences:
"no nontrivial property is decidable"
(Honkala 2021)
- recursively solvable for k-automatic sequences:
- Sequence contains a square?
- Sequence contains a palindrom?
- ...
(e.g. Charlier-Rampersad-Shallit 2012)

Undecidability of the Growth

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{Q}, is $f(n)$ in $O\left(n^{\sigma}(\log n)^{\ell}\right)$?"
. . . recursively unsolvable

Undecidability of the Growth

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{Q}, is $f(n)$ in $O\left(n^{\sigma}(\log n)^{\ell}\right)$?"
. . . recursively unsolvable

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{N}, is $f(n)$ in $\Omega\left(n^{\sigma}(\log n)^{\ell}\right)$?"
. . . recursively unsolvable

Undecidability of the Growth

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{Q}, is $f(n)$ in $O\left(n^{\sigma}(\log n)^{\ell}\right)$?"
. . . recursively unsolvable

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{N}, is $f(n)$ in $\Omega\left(n^{\sigma}(\log n)^{\ell}\right)$?"
. . . recursively unsolvable

Theorem (K-Shallit 2020)

"Given a k-regular sequence $(f(n))_{n \geq 0}$ over \mathbb{Q}, does $f(n)$ have at least polynomial growth?"
. . . recursively unsolvable

Sequences
 (k-regular sequences)

Asymptotics

(growth rates)

Computations

(algorithms)

