Uncovering hidden automatic sequences

Elżbieta Krawczyk (joint work with Clemens Müllner)
Jagiellonian University, Kraków

Liége, 22 May 2023

Automatic sequences

Example: Thue-Morse sequence

Let $\mathcal{A}=\{0,1\}$ and let $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$ be a substitution given by

$$
\varphi(0)=01, \varphi(1)=10 .
$$

The Thue-Morse sequence

$$
x=01101001100101101 \ldots
$$

is a fixed point of φ. It is a (purely) 2-automatic sequence.
Let $\mathrm{k} \geq 2$. A sequence $\mathrm{x} \in \mathcal{A}^{\mathbb{N}}$ is k -automatic if there exist

- a substitution $\varphi: \mathcal{B} \rightarrow \mathcal{B}^{*}$ of length k ,
- a fixed point y of φ, i.e. $\varphi(\mathrm{y})=\mathrm{y}$,
- a coding $\tau: \mathcal{B} \rightarrow \mathcal{A}$
such that $\mathrm{x}=\tau(\mathrm{y})$.

Substitutive sequences

One can consider general substitutions (not necessarily of constant length).

A sequence $\mathrm{x} \in \mathcal{A}^{\mathbb{N}}$ is substitutive if there exist

- a substitution $\varphi: \mathcal{B} \rightarrow \mathcal{B}^{+}$such that φ (a) starts with a for some $\mathrm{a} \in \mathcal{B}$,
- an (infinite) fixed point y of φ given by

$$
y=\varphi^{\infty}(a)=\lim _{\mathrm{n} \rightarrow \infty} \varphi^{\mathrm{n}}(\mathrm{a})
$$

- a coding $\tau: \mathcal{B} \rightarrow \mathcal{A}$
such that $\mathrm{x}=\tau(\mathrm{y})=\tau\left(\varphi^{\infty}(\mathrm{a})\right)$.

Hidden automatic sequences

Problem A [Allouche, Dekking, Queffélec (2021)]

Let x be a fixed point of a substitution. Decide whether it is automatic.

Problem A was already explicitly stated in the book of Allouche and Shallit [Problem 3, section 7.11] (2003) and investigated much earlier by Dekking (1976).

Automatic sequences hidden in self-similar groups

A hidden automatic sequence [Allouche, Queffélec (in an unpublished note), Grigorchuk, Lenz, Nagnibeda, (2017)]
Lysenok substitution:

$$
\mathrm{L}: \mathrm{a} \mapsto \mathrm{aca}, \quad \mathrm{~b} \mapsto \mathrm{~d}, \quad \mathrm{c} \mapsto \mathrm{~b}, \quad \mathrm{~d} \mapsto \mathrm{c} .
$$

Used by Lysenok to give a recursive presentation by generators and relations of the first Grigorchuk group G (1985):

$$
\begin{aligned}
\mathrm{G}= & <\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \mid 1=\mathrm{a}^{2}=\mathrm{b}^{2}=\mathrm{c}^{2}=\mathrm{d}^{2}= \\
& =\mathrm{bcd}=\mathrm{L}^{\mathrm{k}}\left((\mathrm{ad})^{4}\right)=\mathrm{L}^{\mathrm{k}}\left((\text { adacac })^{4}\right), \mathrm{k} \in \mathbb{N}>
\end{aligned}
$$

The fixed point of L is 2-automatic, it is a fixed point of

$$
\mathrm{a} \mapsto \mathrm{ac}, \quad \mathrm{~b} \mapsto \mathrm{ad}, \quad \mathrm{c} \mapsto \mathrm{ab}, \quad \mathrm{~d} \mapsto \mathrm{ac} .
$$

A nonautomatic sequences: gaps in the Thue-Morse sequence

Let $\mathrm{x}=01101001 \ldots$ be the Thue-Morse sequence.
The sequence encoding the differences of the consecutive occurrences of $\mathrm{w}=1$ in x is again 2 -automatic.

What about words $\mathrm{w} \in \mathrm{L}(\mathrm{x})$ of length ≥ 2 ?

Theorem [Spiegelhofer (2021)]

Let w be a factor of the Thue - Morse sequence of length at least 2. The sequence of gaps between consecutive occurrences of w in x is not automatic.

A nonautomatic sequences: gaps in the Thue-Morse sequence

A nonautomatic sequence [Spiegelhofer (2021)]

Let $\mathrm{B}=33423 \ldots$ be given by the substitution

$$
\varphi: \mathrm{a} \mapsto \mathrm{a} \overline{\mathrm{a}} \mathrm{bc}, \overline{\mathrm{a}} \mapsto \mathrm{a} \overline{\mathrm{a}} \mathrm{cb}, \mathrm{~b} \mapsto \mathrm{a} \overline{\mathrm{a}} \mathrm{bcb}, \mathrm{c} \mapsto \mathrm{a} \overline{\mathrm{a}} \mathrm{c},
$$

and the coding

$$
\tau: \mathrm{a} \mapsto 3, \overline{\mathrm{a}} \mapsto 3, \mathrm{~b} \mapsto 4, \mathrm{c} \mapsto 2 .
$$

Sequence B encodes the differences of the consecutive occurrences of the word 01 in the Thue-Morse sequence.

To show the previous Theorem, it is enough to show that B is not automatic.

How to check automaticity

What tools do we have for checking automaticity?

Incidence matrix of a substitution

Let $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$ be a substitution. With φ we associate the incidence matrix $\mathrm{M}_{\varphi}=\left[|\varphi(\mathrm{b})|_{\mathrm{a}}\right]_{\mathrm{a}, \mathrm{b} \in \mathcal{A}}$, e.g. for

$$
\varphi: 0 \mapsto 01, \quad 1 \mapsto 00,
$$

we have

$$
\mathrm{M}_{\varphi}=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right] .
$$

Such M_{φ} has a dominant (Perron-Frobenius) eigenvalue $\alpha>0$ (i.e. $|\gamma| \leq \alpha$ for any other eigenvalue γ).

For each $\mathrm{w} \in \mathcal{A}^{*}:\left(\left|\varphi^{\mathrm{n}}(\mathrm{w})\right|\right)_{\mathrm{n}}=$ linear recurrence sequence with characteristic polynomial given by the minimal polynomial of M_{φ}.

Dominant eigenvalue has to be an integer

Theorem [Durand (2011)]

Let x be a substitutive sequence given by some substitution φ and coding τ. Assume x is k-automatic and not ultimately periodic. Then the dominant eigenvalue of M_{φ} is multiplicatively dependent with k .

It is well-known this is not sufficient for automaticity.

A nice sufficient linear condition

Theorem [Dekking (1976)]

Let $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{+}$be a substitution with a fixed point x . If the length vector ${ }^{\mathrm{t}}(|\varphi(\mathrm{a})|)_{\mathrm{a} \in \mathcal{A}}$ is a left eigenvector of M_{φ}, then x is automatic.

The length vector ${ }^{\mathrm{t}}(|\varphi(\mathrm{a})|)_{\mathrm{a} \in \mathcal{A}}$ is a left eigenvector of M_{φ} (corresponding to the dominant eigenvalue k) iff $\left|\varphi^{\mathrm{n}}(\mathrm{a})\right|=\mathrm{c}_{\mathrm{a}} \mathrm{k}^{\mathrm{n}}$ for all $\mathrm{a} \in \mathcal{A}$ for some $\mathrm{c}_{\mathrm{a}} \in \mathbb{N}$.

This condition is not necessary (there is no iff linear condition).

Hidden automatic sequences

Other examples of hidden automatic sequences and methods: Allouche, Dekking and Queffélec, "Hidden automatic sequences", Comb. Theory 1 (2021).

Allouche, Shallit, Yassawi, "How to prove that a sequence is not automatic", Expo. Math. 40, 1-22 (2022).

Hidden automatic sequences

Other examples of hidden automatic sequences and methods: Allouche, Dekking and Queffélec, "Hidden automatic sequences", Comb. Theory 1 (2021).

Allouche, Shallit, Yassawi, "How to prove that a sequence is not automatic", Expo. Math. 40, 1-22 (2022).

Can we come up with a nice checkable if and only if condition for automaticity of substitutive sequences?

Main result: assumptions

We assume that our sequence x is not ultimately periodic.

We assume that our substitution φ is nondegenerate, i.e., the quotient of no two eigenvalues of the incidence matrix M_{φ} is a root of unity and 1 is the only root of unity which is an eigenvalue of M_{φ}.

Each substitution has some power which is nondegenerate.

Main result

Let x be a fixed point of a nondegenerate substitution $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$. Assume that x is not ultimately periodic. Let $\mathcal{L}(\mathrm{x})$ denote the set of all words appearing in x .

Theorem I [K., Müllner]

The following conditions are equivalent:
(1) The sequence x is automatic.
(2) For all $\mathrm{v} \in \mathcal{L}(\mathrm{x})$ we have

$$
\left|\varphi^{\mathrm{n}}(\mathrm{v})\right|=\mathrm{c}_{\mathrm{v}} \mathrm{k}^{\mathrm{n}}+\mathrm{d}_{\mathrm{v}} \text { for } \mathrm{n} \geq|\mathcal{A}|
$$

for some $\mathrm{c}_{\mathrm{v}}, \mathrm{d}_{\mathrm{v}} \in \mathbb{Q}$ and $\mathrm{k} \in \mathbb{N}$ with $\mathrm{d}_{\mathrm{v}}, \mathrm{v} \in \mathcal{L}(\mathrm{x})$ taking only finitely many values.

Condition (2), in particular, implies that $\left|\varphi^{n}(a)\right|=c_{a} k^{n}+d_{a}$ for $\mathrm{n} \geq 0$ for all $\mathrm{a} \in \mathcal{A}$.

Main result

For each $\mathrm{a} \in \mathcal{A}$ and $\mathrm{m} \geq 1$, let $\mathrm{P}_{\mathrm{a}}(\mathrm{m})$ be the set of nonempty prefixes v of $\varphi^{\mathrm{m}}(\mathrm{a})$ such that va is a prefix of $\varphi^{\mathrm{m}}(\mathrm{a})$.

For example, let

$$
\varphi(\mathrm{a})=\mathrm{bab} \quad \varphi(\mathrm{~b})=\mathrm{ab} .
$$

Then $\mathrm{P}_{\mathrm{a}}(1)=\{\mathrm{b}\}$ and $\mathrm{P}_{\mathrm{a}}(2)=\{\mathrm{abb}, \mathrm{abbab}\}$ since

$$
\varphi^{2}(\mathrm{a})=\text { abbabab. }
$$

Main result

For each $\mathrm{a} \in \mathcal{A}$ and $\mathrm{m} \geq 1$, let $\mathrm{P}_{\mathrm{a}}(\mathrm{m})$ be the set of prefixes v of φ^{m} (a) such that va is a prefix of $\varphi^{\mathrm{m}}(\mathrm{a})$.

Theorem I (continued) [K., Müllner]

The following conditions are equivalent:
(1) The sequence x is automatic.
(2) For each $\mathrm{a} \in \mathcal{A},\left|\varphi^{\mathrm{n}}(\mathrm{a})\right|=\mathrm{c}_{\mathrm{a}} \mathrm{k}^{\mathrm{n}}+\mathrm{d}_{\mathrm{a}}$ for $\mathrm{n} \geq|\mathcal{A}|$ with $\mathrm{c}_{\mathrm{a}}, \mathrm{d}_{\mathrm{a}} \in \mathbb{Q}$ and

$$
\left|\varphi^{\mathrm{n}}(\mathrm{v})\right|=\mathrm{c}_{\mathrm{v}} \mathrm{k}^{\mathrm{n}} \quad \text { for } \quad \mathrm{n} \geq|\mathcal{A}|
$$

for all $\mathrm{v} \in \mathrm{P}_{\mathrm{m}}(\mathrm{a}), \mathrm{a} \in \mathcal{A}$, and $1 \leq \mathrm{m} \leq|\mathcal{A}|$.
Here, $\mathrm{n} \geq|\mathcal{H}|$ can be replaced by $\mathrm{n} \geq \mathrm{s}$, where s denotes the size of the largest Jordan block of the incidence matrix M_{φ} corresponding to the eigenvalue 0 .

Main result

Now assume that x is any substitutive sequence given as the image by a coding τ of a fixed point of a nondegenerate substitution $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$.

If x is aperiodic (i.e., the orbit closure of x has no periodic points) Theorem I is true. In particular, automaticity of x depends only on the substitution φ (and not on the coding τ).

It is not true in the general case (example later).

A version for uniformly recurrent sequences

Theorem [Dekking (1976)]

Let $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{+}$be a substitution with a fixed point x . If the length vector ${ }^{\mathrm{t}}(|\varphi(\mathrm{a})|)_{\mathrm{a} \in \mathcal{A}}$ is a left eigenvector of M_{φ}, then x is automatic.

For uniformly recurrent x, Dekking's criterion applied to the return substitution $\varrho: \mathrm{R}_{\mathrm{a}} \rightarrow \mathrm{R}_{\mathrm{a}}^{*}$ essentially gives an iff condition for automaticity of x.

A version for uniformly recurrent sequences

Let $\mathrm{x}=\tau\left(\varphi^{\infty}(\mathrm{a})\right)$ be a substitutive sequence. Assume x is uniformly recurrent and nonperiodic.

Let $\varrho: \mathrm{R}_{\mathrm{a}} \rightarrow \mathrm{R}_{\mathrm{a}}^{*}$ be the return substitution to the letter a and let M_{ϱ} denote the incidence matrix of ϱ.

Corollary

The following conditions are equivalent:
(1) x is automatic;
(2) ${ }^{\mathrm{t}}\left(\left|\varphi^{\mathrm{s}}(\mathrm{w})\right|\right)_{\mathrm{w} \in \mathrm{R}_{\mathrm{a}}}$ is a left eigenvector of M_{ϱ}, where s is the size of the largest Jordan block of M_{φ} corresponding to the eigenvalue 0 .

Theorem I does not hold in general

Consider a substitution

$$
\varphi(\alpha)=\alpha \mathrm{ab} \alpha, \quad \varphi(\mathrm{a})=\text { abbbba }, \quad \varphi(\mathrm{b})=\mathrm{aa}
$$

and a coding

$$
\tau(\alpha)=\alpha, \quad \tau(\mathrm{a})=\tau(\mathrm{b})=0 .
$$

and the corresponding automatic sequence

$$
\mathrm{x}=\tau\left(\varphi^{\omega}(\alpha)\right)=\alpha 00 \alpha 0^{8} \alpha 00 \alpha 0^{32} \alpha \ldots
$$

Theorem I does not hold in general

Consider a substitution

$$
\varphi(\alpha)=\alpha \mathrm{ab} \alpha, \quad \varphi(\mathrm{a})=\text { abbbba }, \quad \varphi(\mathrm{b})=\mathrm{aa}
$$

and a coding

$$
\tau(\alpha)=\alpha, \quad \tau(\mathrm{a})=\tau(\mathrm{b})=0 .
$$

and the corresponding automatic sequence

$$
\mathrm{x}=\tau\left(\varphi^{\omega}(\alpha)\right)=\alpha 00 \alpha 0^{8} \alpha 00 \alpha 0^{32} \alpha \ldots
$$

We have

$$
\left|\varphi^{\mathrm{n}}(\mathrm{a})\right|=\frac{4}{3} \cdot 4^{\mathrm{n}}-\frac{1}{3}(-2)^{\mathrm{n}}, \quad\left|\varphi^{\mathrm{n}}(\mathrm{~b})\right|=\frac{2}{3} \cdot 4^{\mathrm{n}}+\frac{1}{3}(-2)^{\mathrm{n}}, \quad\left|\varphi^{\mathrm{n}}(\alpha)\right|=4^{\mathrm{n}}
$$

The fixed point $\mathrm{x}^{\prime}=\varphi^{\omega}(\alpha)$ is not automatic. However, the sequence x is 2-automatic: it is a fixed point of a substitution

$$
\varphi^{\prime}(\alpha)=\alpha 00 \alpha, \quad \varphi^{\prime}(0)=0000
$$

General case

Call a representation $(\varphi, \mathcal{A}, \alpha, \tau)$ of a substitutive sequence x minimal if x cannot be given by some ($\varphi^{\prime}, \mathcal{A}^{\prime}, \alpha^{\prime}, \tau^{\prime}$) with $\left|\mathcal{A}^{\prime}\right|<|\mathcal{A}|$.

Is it true that if a substitutive sequence x given by a minimal representation $(\varphi, \mathcal{A}, \alpha, \tau)$ is automatic, then all letters have growth of the type $\mathrm{ck}^{\mathrm{n}}+\mathrm{d}$?

Recognizability in purely automatic systems

Let $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$ be a substitution of constant length k with a fixed point x. Let X be the system generated by x .

Theorem [Berthé, Steiner, Thuswaldner, Yassawi (2020)]

For each nonperiodic $\mathrm{y} \in \mathrm{X}$, there exists a unique $0 \leq \mathrm{c}<\mathrm{k}$ and $y^{\prime} \in X$ such that

$$
\mathrm{y}=\mathrm{T}^{\mathrm{c}}\left(\varphi\left(\mathrm{y}^{\prime}\right)\right)
$$

Hence, for each $\mathrm{n} \geq 1$ and nonperiodic $\mathrm{y} \in \mathrm{X}$, there exists a unique $0 \leq c_{n}<k^{n}$ and $y^{(n)} \in X$ such that

$$
\mathrm{y}=\mathrm{T}^{\mathrm{c}_{\mathrm{n}}}\left(\varphi^{\mathrm{n}}\left(\mathrm{y}^{(\mathrm{n})}\right)\right)
$$

Recognizability in purely automatic systems

For a sequence $\mathrm{x}=\left(\mathrm{x}_{\mathrm{n}}\right)_{\mathrm{n}}$ and a word $\mathrm{w} \in \mathcal{L}(\mathrm{x})$ of length $\mathrm{t} \geq 1$ we let

$$
N(\mathrm{x}, \mathrm{w})=\left\{\mathrm{n} \in \mathbb{N} \mid \mathrm{x}_{[\mathrm{n}, \mathrm{n}+\mathrm{t})}=\mathrm{w}\right\}
$$

denote the set of all occurrences of w in x .

Let $\mathcal{L}_{\text {per }}(\mathrm{x})$ be the union of languages of all periodic subsystems of the system generated by x. A "compactness argument" gives:

Corollary

For each $\mathrm{w} \in \mathcal{L}(\mathrm{x}) \backslash \mathcal{L}_{\text {per }}(\mathrm{x})$ we have

$$
\mathrm{N}(\mathrm{x}, \mathrm{w})-\mathrm{N}(\mathrm{x}, \mathrm{w}) \equiv 0 \bmod \mathrm{k}^{\mathrm{n}(|\mathrm{w}|)}
$$

for some nondecreasing $n(|\mathrm{w}|) \in \mathbb{N}, \mathrm{n}(|\mathrm{w}|) \rightarrow \infty$ as $|\mathrm{w}| \rightarrow \infty$.
We want: a version for general (non purely) automatic sequences and control over $\mathrm{n}(|\mathrm{w}|)$.

Quantitative recognizability for automatic sequences

Let x be a k-automatic sequence. Let $\mathcal{L}_{\text {per }}(\mathrm{x})$ be the union of languages of all periodic subsystems of the system generated by x.

Theorem [K., Müllner]

Let x be a k-automatic sequence. There exist integers $\mathrm{t} \geq 1$, $\mathrm{M} \geq 0$ and a finite set $\mathrm{F} \subset \mathbb{Z}\left(\mathrm{k}^{\mathrm{t}}-1\right)^{-1}$ such that for each $\mathrm{w} \in \mathcal{L}(\mathrm{x}) \backslash \mathcal{L}_{\mathrm{per}}(\mathrm{x})$ long enough

$$
\mathrm{N}(\mathrm{x}, \mathrm{w})-\mathrm{N}(\mathrm{x}, \mathrm{w}) \subset \mathrm{F} \bmod \mathrm{k}^{\mathrm{l}(\mathrm{w})-\mathrm{M}}
$$

where

$$
\left.\mathrm{l}(\mathrm{w})=\left\lfloor\log _{\mathrm{k}}|\mathrm{w}|\right\rfloor \text { (i.e., } \mathrm{k}^{\mathrm{l}(\mathrm{w})} \leq|\mathrm{w}|<\mathrm{k}^{\mathrm{l}(\mathrm{w})+1}\right) \text {. }
$$

The statement clearly does not hold for words $\mathrm{w} \in \mathcal{L}_{\mathrm{per}}(\mathrm{x})$.

How we use it

Let x be a fixed point of a substitution $\varphi: \mathcal{A} \rightarrow \mathcal{A}^{*}$. Assume x is k -automatic.

Let $\mathrm{u} \in \mathcal{L}(\mathrm{x})$. A word w is called a return word to u if wu lies in $\mathcal{L}(x)$ and u is a prefix of wu. For example, if $u=a a$, then

$$
\text { x = aacb|aaccc|a|aabb|aa } \ldots
$$

Claim C

There exists a finite set $\mathrm{F} \subset \mathbb{Q}$ such that for each nonperiodic $\mathrm{z} \in \mathcal{L}(\mathrm{x})$ (i.e., $\varphi^{\mathrm{n}}(\mathrm{z}) \notin \mathcal{L}_{\text {per }}(\mathrm{x})$ for large n$)$ and each return word w to z with the same growth type as z we have

$$
\begin{equation*}
\left|\varphi^{\mathrm{n}}(\mathrm{w})\right|=\mathrm{c}_{\mathrm{w}} \mathrm{k}_{\mathrm{z}}^{\mathrm{n}}+\mathrm{d}_{\mathrm{w}}, \quad \mathrm{n} \geq|\mathcal{A}| \tag{1}
\end{equation*}
$$

for some integer k_{z} multiplicatively dependent with $\mathrm{k}, \mathrm{c}_{\mathrm{w}} \in \mathbb{Q}$, and $\mathrm{d}_{\mathrm{w}} \in \mathrm{F}$.
(1) For each $\mathrm{n} \geq 1, \varphi^{\mathrm{n}}(\mathrm{w})$ is a return word to $\varphi^{\mathrm{n}}(\mathrm{z})$.
(2) $\left|\varphi^{\mathrm{n}}(\mathrm{w})\right| \in \mathrm{N}\left(\mathrm{x}, \varphi^{\mathrm{n}}(\mathrm{z})\right)-\mathrm{N}\left(\mathrm{x}, \varphi^{\mathrm{n}}(\mathrm{z})\right) \mathrm{n} \geq 1$.
(3) $\left|\varphi^{\mathrm{n}}(\mathrm{w})\right| \in \mathrm{F} \operatorname{modk} \mathrm{k}^{\mathrm{l}\left(\varphi^{\mathrm{n}}(\mathrm{z})\right)-\mathrm{M}}$ for n big enough, where $l(v)=\left\lfloor\log _{k}|v|\right\rfloor$ for a word v.
(1) $\left|\varphi^{\mathrm{n}}(\mathrm{w})\right|=\mathrm{c}_{\mathrm{w}}(\mathrm{n}) \mathrm{k}^{\mathrm{l}\left(\varphi^{\mathrm{n}}(\mathrm{z})\right)-\mathrm{M}}+\mathrm{d}_{\mathrm{w}}(\mathrm{n})=\mathrm{c}_{\mathrm{w}}(\mathrm{n}) \mathrm{k}^{\mathrm{m}(\mathrm{n})}+\mathrm{d}_{\mathrm{w}}(\mathrm{n})$ with $c_{\mathrm{w}}(\mathrm{n}) \in \mathbb{Z}\left(\mathrm{k}^{\mathrm{t}}-1\right)^{-1}, \mathrm{~d}_{\mathrm{w}}(\mathrm{n}) \in \mathrm{F}$, and $\mathrm{m}(\mathrm{n})=\mathrm{l}\left(\varphi^{\mathrm{n}}(\mathrm{z})\right)-\mathrm{M}$ an increasing sequence of integers.
(6) The sequences $\mathrm{c}_{\mathrm{w}}(\mathrm{n})$ and $\mathrm{d}_{\mathrm{w}}(\mathrm{n})$ take only finitely many values.
(0) $\mathrm{u}(\mathrm{n})=\left|\varphi^{\mathrm{n}}(\mathrm{w})\right|$ is a nondegenerate linear recurrence sequence and so $u(n)=c_{w} k_{z}^{n}+d_{w}$ for some $k_{z} \geq 2$ multiplicatively dependent with k and $\mathrm{c}_{\mathrm{w}}, \mathrm{d}_{\mathrm{w}} \in \mathbb{Q}, \mathrm{d}_{\mathrm{w}} \in \mathrm{F}$.

How we use it

Claim C

There exists a finite set $\mathrm{F} \subset \mathbb{Q}$ such that for each nonperiodic $\mathrm{z} \in \mathcal{L}(\mathrm{x})$ (i.e., $\varphi^{\mathrm{n}}(\mathrm{z}) \notin \mathcal{L}_{\text {per }}(\mathrm{x})$ for large n$)$ and each return word w to z with the same growth type as z we have

$$
\begin{equation*}
\left|\varphi^{\mathrm{n}}(\mathrm{w})\right|=\mathrm{c}_{\mathrm{w}} \mathrm{k}_{\mathrm{z}}^{\mathrm{n}}+\mathrm{d}_{\mathrm{w}}, \quad \mathrm{n} \geq|\mathcal{A}| \tag{2}
\end{equation*}
$$

for some integer k_{z} multiplicatively dependent with $\mathrm{k}, \mathrm{c}_{\mathrm{w}} \in \mathbb{Q}$, and $d_{w} \in F$.

Claim $\mathrm{C}+$ some combinatorics on words implies that

$$
\begin{equation*}
\left|\varphi^{\mathrm{n}}(\mathrm{v})\right|=\mathrm{c}_{\mathrm{v}} \mathrm{k}^{\mathrm{n}}+\mathrm{d}_{\mathrm{v}}, \quad \mathrm{n} \geq|\mathcal{A}| \tag{3}
\end{equation*}
$$

for all $\mathrm{v} \in \mathcal{L}(\mathrm{x})$ with d_{v} taking finitely many values (i.e., condition (2) in main theorem).

