
Uncovering hidden automatic sequences

Elżbieta Krawczyk
(joint work with Clemens Müllner)
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Automatic sequences

Example: Thue–Morse sequence

Let A = {0, 1} and let φ : A → A∗ be a substitution given by

φ(0) = 01, φ(1) = 10.

The Thue–Morse sequence

x = 01101001100101101 . . .

is a fixed point of φ. It is a (purely) 2-automatic sequence.

Let k ≥ 2. A sequence x ∈ AN is k-automatic if there exist

a substitution φ : B → B∗ of length k,

a fixed point y of φ, i.e. φ(y) = y,

a coding τ : B → A

such that x = τ(y).

Elżbieta Krawczyk (joint work with Clemens Müllner) Uncovering hidden automatic sequences



Substitutive sequences

One can consider general substitutions (not necessarily of
constant length).

A sequence x ∈ AN is substitutive if there exist

a substitution φ : B → B+ such that φ(a) starts with a for
some a ∈ B,

an (infinite) fixed point y of φ given by

y = φ∞(a) = lim
n→∞
φn(a),

a coding τ : B → A

such that x = τ(y) = τ(φ∞(a)).
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Hidden automatic sequences

Problem A [Allouche, Dekking, Queffélec (2021)]

Let x be a fixed point of a substitution. Decide whether it is
automatic.

Problem A was already explicitly stated in the book of Allouche
and Shallit [Problem 3, section 7.11] (2003) and investigated
much earlier by Dekking (1976).
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Automatic sequences hidden in self-similar groups

A hidden automatic sequence [Allouche, Queffélec (in an
unpublished note), Grigorchuk, Lenz, Nagnibeda, (2017)]

Lysenok substitution:

L : a 7→ aca, b 7→ d, c 7→ b, d 7→ c.

Used by Lysenok to give a recursive presentation by generators
and relations of the first Grigorchuk group G (1985):

G = < a,b, c,d | 1 = a2 = b2 = c2 = d2 =

= bcd = Lk((ad)4) = Lk((adacac)4), k ∈ N > .

The fixed point of L is 2-automatic, it is a fixed point of

a 7→ ac, b 7→ ad, c 7→ ab, d 7→ ac.
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A nonautomatic sequences: gaps in the Thue–Morse
sequence

Let x = 01101001 . . . be the Thue–Morse sequence.
The sequence encoding the differences of the consecutive
occurrences of w = 1 in x is again 2-automatic.

What about words w ∈ L(x) of length ≥ 2?

Theorem [Spiegelhofer (2021)]

Let w be a factor of the Thue—Morse sequence of length at
least 2. The sequence of gaps between consecutive occurrences
of w in x is not automatic.
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A nonautomatic sequences: gaps in the Thue–Morse
sequence

A nonautomatic sequence [Spiegelhofer (2021)]

Let B = 33423 . . . be given by the substitution

φ : a 7→ aabc, a 7→ aacb, b 7→ aabcb, c 7→ aac,

and the coding

τ : a 7→ 3, a 7→ 3, b 7→ 4, c 7→ 2.

Sequence B encodes the differences of the consecutive
occurrences of the word 01 in the Thue–Morse sequence.

To show the previous Theorem, it is enough to show that B is
not automatic.
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How to check automaticity

What tools do we have for checking automaticity?
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Incidence matrix of a substitution

Let φ : A → A∗ be a substitution. With φ we associate the
incidence matrix Mφ = [|φ(b)|a]a,b∈A, e.g. for

φ : 0 7→ 01, 1 7→ 00,

we have

Mφ =
[
1 2
1 0

]
.

Such Mφ has a dominant (Perron–Frobenius) eigenvalue α > 0
(i.e. |γ| ≤ α for any other eigenvalue γ).

For each w ∈ A∗: (|φn(w)|)n = linear recurrence sequence with
characteristic polynomial given by the minimal polynomial of
Mφ.
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Dominant eigenvalue has to be an integer

Theorem [Durand (2011)]

Let x be a substitutive sequence given by some substitution φ
and coding τ. Assume x is k-automatic and not ultimately
periodic. Then the dominant eigenvalue of Mφ is
multiplicatively dependent with k.

It is well-known this is not sufficient for automaticity.
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A nice sufficient linear condition

Theorem [Dekking (1976)]

Let φ : A → A+ be a substitution with a fixed point x. If the
length vector t(|φ(a)|)a∈A is a left eigenvector of Mφ, then x is
automatic.

The length vector t(|φ(a)|)a∈A is a left eigenvector of Mφ
(corresponding to the dominant eigenvalue k) iff
|φn(a)| = cakn for all a ∈ A for some ca ∈ N.

This condition is not necessary (there is no iff linear condition).
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Hidden automatic sequences

Other examples of hidden automatic sequences and methods:
Allouche, Dekking and Queffélec, ”Hidden automatic
sequences”, Comb. Theory 1 (2021).

Allouche, Shallit, Yassawi, ”How to prove that a sequence is not
automatic”, Expo. Math. 40, 1–22 (2022).

Can we come up with a nice checkable if and only if condition
for automaticity of substitutive sequences?
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Main result: assumptions

We assume that our sequence x is not ultimately periodic.

We assume that our substitution φ is nondegenerate, i.e., the
quotient of no two eigenvalues of the incidence matrix Mφ is a
root of unity and 1 is the only root of unity which is an
eigenvalue of Mφ.

Each substitution has some power which is nondegenerate.
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Main result

Let x be a fixed point of a nondegenerate substitution
φ : A → A∗. Assume that x is not ultimately periodic. Let L(x)
denote the set of all words appearing in x.

Theorem I [K., Müllner]

The following conditions are equivalent:
1 The sequence x is automatic.
2 For all v ∈ L(x) we have

|φn(v)| = cvkn + dv for n ≥ |A|,

for some cv,dv ∈ Q and k ∈ N with dv, v ∈ L(x) taking only
finitely many values.

Condition (2), in particular, implies that |φn(a)| = cakn + da for
n ≥ 0 for all a ∈ A.

Elżbieta Krawczyk (joint work with Clemens Müllner) Uncovering hidden automatic sequences



Main result

For each a ∈ A and m ≥ 1, let Pa(m) be the set of nonempty
prefixes v of φm(a) such that va is a prefix of φm(a).

For example, let
φ(a) = bab φ(b) = ab.

Then Pa(1) = {b} and Pa(2) = {abb, abbab} since

φ2(a) = abbabab.
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Main result

For each a ∈ A and m ≥ 1, let Pa(m) be the set of prefixes v of
φm(a) such that va is a prefix of φm(a).

Theorem I (continued) [K., Müllner]

The following conditions are equivalent:
1 The sequence x is automatic.
2 For each a ∈ A, |φn(a)| = cakn + da for n ≥ |A| with
ca,da ∈ Q and

|φn(v)| = cvkn for n ≥ |A|

for all v ∈ Pm(a), a ∈ A, and 1 ≤ m ≤ |A|.

Here, n ≥ |A| can be replaced by n ≥ s, where s denotes the size
of the largest Jordan block of the incidence matrix Mφ
corresponding to the eigenvalue 0.
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Main result

Now assume that x is any substitutive sequence given as the
image by a coding τ of a fixed point of a nondegenerate
substitution φ : A → A∗.

If x is aperiodic (i.e., the orbit closure of x has no periodic
points) Theorem I is true. In particular, automaticity of x
depends only on the substitution φ (and not on the coding τ).

It is not true in the general case (example later).
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A version for uniformly recurrent sequences

Theorem [Dekking (1976)]

Let φ : A → A+ be a substitution with a fixed point x. If the
length vector t(|φ(a)|)a∈A is a left eigenvector of Mφ, then x is
automatic.

For uniformly recurrent x, Dekking’s criterion applied to the
return substitution ϱ : Ra → R∗a essentially gives an iff condition
for automaticity of x.
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A version for uniformly recurrent sequences

Let x = τ(φ∞(a)) be a substitutive sequence. Assume x is
uniformly recurrent and nonperiodic.

Let ϱ : Ra → R∗a be the return substitution to the letter a and
let Mϱ denote the incidence matrix of ϱ.

Corollary

The following conditions are equivalent:

1 x is automatic;

2 t(|φs(w)|)w∈Ra is a left eigenvector of Mϱ, where s is the size
of the largest Jordan block of Mφ corresponding to the
eigenvalue 0.
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Theorem I does not hold in general
Consider a substitution

φ(α) = αabα, φ(a) = abbbba, φ(b) = aa

and a coding
τ(α) = α, τ(a) = τ(b) = 0.

and the corresponding automatic sequence

x = τ(φω(α)) = α00α08α00α032α . . .

We have

|φn(a)| =
4
3
· 4n −

1
3

(−2)n, |φn(b)| =
2
3
· 4n +

1
3

(−2)n, |φn(α)| = 4n.

The fixed point x′ = φω(α) is not automatic. However, the
sequence x is 2-automatic: it is a fixed point of a substitution

φ′(α) = α00α, φ′(0) = 0000.
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General case

Call a representation (φ,A, α, τ) of a substitutive sequence x
minimal if x cannot be given by some (φ′,A′, α′, τ′) with
|A′| < |A|.

Is it true that if a substitutive sequence x given by a minimal
representation (φ,A, α, τ) is automatic, then all letters have
growth of the type ckn + d?

Elżbieta Krawczyk (joint work with Clemens Müllner) Uncovering hidden automatic sequences



Recognizability in purely automatic systems

Let φ : A → A∗ be a substitution of constant length k with a
fixed point x. Let X be the system generated by x.

Theorem [Berthé, Steiner, Thuswaldner, Yassawi (2020)]

For each nonperiodic y ∈ X, there exists a unique 0 ≤ c < k and
y′ ∈ X such that

y = Tc(φ(y′)).

Hence, for each n ≥ 1 and nonperiodic y ∈ X, there exists a
unique 0 ≤ cn < kn and y(n) ∈ X such that

y = Tcn(φn(y(n))).
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Recognizability in purely automatic systems

For a sequence x = (xn)n and a word w ∈ L(x) of length t ≥ 1 we
let

N(x,w) = {n ∈ N | x[n,n+t) = w}

denote the set of all occurrences of w in x.

Let Lper(x) be the union of languages of all periodic subsystems
of the system generated by x. A ”compactness argument” gives:

Corollary

For each w ∈ L(x) \ Lper(x) we have

N(x,w) −N(x,w) ≡ 0 mod kn(|w|),

for some nondecreasing n(|w|) ∈ N, n(|w|)→ ∞ as |w| → ∞.

We want: a version for general (non purely) automatic
sequences and control over n(|w|).
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Quantitative recognizability for automatic sequences

Let x be a k-automatic sequence. Let Lper(x) be the union of
languages of all periodic subsystems of the system generated by
x.

Theorem [K., Müllner]

Let x be a k-automatic sequence. There exist integers t ≥ 1,
M ≥ 0 and a finite set F ⊂ Z(kt − 1)−1 such that for each
w ∈ L(x) \ Lper(x) long enough

N(x,w) −N(x,w) ⊂ F mod kl(w)−M,

where
l(w) =

⌊
logk |w|

⌋
(i.e., kl(w) ≤ |w| < kl(w)+1).

The statement clearly does not hold for words w ∈ Lper(x).
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How we use it
Let x be a fixed point of a substitution φ : A → A∗. Assume x
is k-automatic.

Let u ∈ L(x). A word w is called a return word to u if wu lies in
L(x) and u is a prefix of wu. For example, if u = aa, then

x = aacb|aaccc|a|aabb|aa . . .

Claim C
There exists a finite set F ⊂ Q such that for each nonperiodic
z ∈ L(x) (i.e., φn(z) < Lper(x) for large n) and each return word
w to z with the same growth type as z we have

|φn(w)| = cwknz + dw, n ≥ |A| (1)

for some integer kz multiplicatively dependent with k, cw ∈ Q,
and dw ∈ F.

Elżbieta Krawczyk (joint work with Clemens Müllner) Uncovering hidden automatic sequences



How we use it

1 For each n ≥ 1, φn(w) is a return word to φn(z).
2 |φn(w)| ∈ N(x, φn(z)) −N(x, φn(z)) n ≥ 1.
3 |φn(w)| ∈ F mod kl(φ

n(z))−M for n big enough, where
l(v) =

⌊
logk |v|

⌋
for a word v.

4 |φn(w)| = cw(n)kl(φ
n(z))−M + dw(n) = cw(n)km(n) + dw(n) with

cw(n) ∈ Z(kt − 1)−1, dw(n) ∈ F, and m(n) = l(φn(z)) −M an
increasing sequence of integers.

5 The sequences cw(n) and dw(n) take only finitely many
values.

6 u(n) = |φn(w)| is a nondegenerate linear recurrence sequence
and so u(n) = cwknz + dw for some kz ≥ 2 multiplicatively
dependent with k and cw,dw ∈ Q, dw ∈ F.
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How we use it

Claim C
There exists a finite set F ⊂ Q such that for each nonperiodic
z ∈ L(x) (i.e., φn(z) < Lper(x) for large n) and each return word
w to z with the same growth type as z we have

|φn(w)| = cwknz + dw, n ≥ |A| (2)

for some integer kz multiplicatively dependent with k, cw ∈ Q,
and dw ∈ F.

Claim C + some combinatorics on words implies that

|φn(v)| = cvkn + dv, n ≥ |A| (3)

for all v ∈ L(x) with dv taking finitely many values (i.e.,
condition (2) in main theorem). □
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