# Lattice-based number systems with the same radix 

Jakub Krásenský<br>joint work with Attila Kovács

Charles University (Prague)
24.5. 2023

## Contents

(1) Number systems in rings
(2) Number systems in lattices

## Definitions

Let $R$ be a ring, $\beta \in R$ (radix) and $\mathcal{A} \ni 0$ a finite subset of $R$ (alphabet). A $(\beta, \mathcal{A})$-representation of $x \in R$ is

$$
x=\sum_{i=0}^{N} \beta^{i} a_{i}, \quad \text { where } N \in \mathbb{N}_{0}, a_{i} \in \mathcal{A}, a_{N} \neq 0
$$

## Definition

We call $(\beta, \mathcal{A})$ a number system (GNS) on $R$ if every nonzero $x \in R$ has a unique $(\beta, \mathcal{A})$-representation.

Which of the following are GNSs (in $\mathbb{Z}$ or $\mathbb{Z}[\mathrm{i}]$ )? $(10,\{0, \ldots, 9\}) ;(2,\{0,1\}) ;(2,\{-1,0,1\}) ;(-2,\{0,1\}) ;(3,\{-1,0,1\})$; $(10,\{-5, \ldots, 5\}) ;(1+\mathrm{i},\{0,1\}) ; \quad(-1+\mathrm{i},\{0,1\})$.

Penney number

## Definitions

Let $R$ be a ring, $\beta \in R$ (radix) and $\mathcal{A} \ni 0$ a finite subset of $R$ (alphabet). A $(\beta, \mathcal{A})$-representation of $x \in R$ is

$$
x=\sum_{i=0}^{N} \beta^{i} a_{i}, \quad \text { where } N \in \mathbb{N}_{0}, a_{i} \in \mathcal{A}, a_{N} \neq 0
$$

## Definition

We call $(\beta, \mathcal{A})$ a number system (GNS) on $R$ if every nonzero $x \in R$ has a unique $(\beta, \mathcal{A})$-representation.

Which of the following are GNSs (in $\mathbb{Z}$ or $\mathbb{Z}[\mathrm{i}]$ )? $(10,\{0, \ldots, 9\}) ;(2,\{0,1\}) ;(2,\{-1,0,1\}) ;(-2,\{0,1\}) ;(3,\{-1,0,1\})$; $(10,\{-5, \ldots, 5\}) ; \quad(1+\mathrm{i},\{0,1\}) ; \quad(-1+\mathrm{i},\{0,1\})$.
Answer: The negabinary, the balanced ternary and the Penney number system.

Penney, 1965: $(-1+\mathrm{i},\{0,1\})$ is a GNS on $\mathbb{Z}[\mathrm{i}]$.
(For example, $-1=\beta^{4}+\beta^{3}+\beta^{2}+1$ for $\beta=-1+$ i.)
Negative powers $\sum_{j=-\infty}^{N} \beta^{j} a_{j}$ allow to represent all of $\mathbb{C}$ :


Let $(\beta, \mathcal{A})$ be a GNS in a number field $\operatorname{order}\left(\mathcal{O} \subset \mathcal{O}_{K}\right.$ for a number field $K)$. Then:
(1) $\mathcal{A}$ is a FRS modulo $\beta$,
(2) $\left|\beta_{i}\right|>1$ for every conjugate of $\beta$.

If (1) and (2) hold, then:
(1) $(\beta, \mathcal{A})$-representations are unique.
(2) There exists a simple algorithm for computing them.
(3) To decide the GNS property, it suffices to check finitely many elements $x$.
Situation in $\mathbb{Z}$ :

- No GNS with radix 2 .
- Radix -2: The only good alphabets are $\pm\{0,1\}$.
- Good alphabets for 3: Difficult open question.
- Kátai, Szabó, 1975: Classification of GNSs in $\mathbb{Z}[\mathrm{i}]$ with $\mathcal{A}=\{0,1, \ldots, n\}$. (So-called canonical number systems (CNS).)
- Steidl, 1989: Classification of all $\beta \in \mathbb{Z}[\mathbf{i}]$ which admit at least one GNS $(\beta, \mathcal{A})$.
- Kátai, 1992: Generalisation to $\mathcal{O}_{K}$ for imaginary quadratic $K$.
- K., 2015: The analogue for Hurwitz and Lipschitz integral quaternions.
In the latter three cases, the statement is as follows:
A GNS with radix $\beta$ exists if and only if $|\beta|>1$ and $|\beta-1| \neq 1$.


## Definition (GNS on a lattice, Vince, 1993)

Let $\Lambda$ be a $\mathbb{Z}$-lattice and $L$ a linear operator on $\Lambda$. (For our purposes WLOG $\Lambda=\mathbb{Z}^{d}$ and $L \in \mathbb{Z}^{d \times d}$.) Let $\mathcal{A} \ni 0$ be a finite subset of $\Lambda$. We call $(\beta, \mathcal{A})$ a $G N S$ on $\Lambda$ if every nonzero $x \in \Lambda$ has a unique representation of the form

$$
x=\sum_{i=0}^{N} L^{i} a_{i}, \quad \text { where } N \in \mathbb{N}_{0}, a_{i} \in \mathcal{A}, a_{N} \neq 0
$$

Again: If $(L, \mathcal{A})$ is a GNS, then:
(1) $\mathcal{A}$ is a FRS modulo $L$;

- in particular, $|\mathcal{A}|=|\operatorname{det} L|$.
(2) $L$ is expansive, i.e. $\rho\left(L^{-1}\right)<1$;
(3) $\operatorname{det}(L-I) \neq \pm 1$. "Unit condition."
- If $L$ is a radix of a GNS, then $L$ is expansive $\left(\rho\left(L^{-1}\right)<1\right)$.
- For expansive $L$, there is a vector norm $\|\cdot\|$ such that $\left\|L^{-1}\right\|<1$; this again gives an algorithm for checking the GNS property.
- Germán, Kovács, 2007: If $\rho\left(L^{-1}\right)<1 / 2$, then $L$ is a radix of some GNS.
- K., 2018: If $\rho\left(L^{-1}\right) \leq 1 / 2$ and 2 is not an eigenvalue, then $L$ is a radix of some GNS.

Question: Given a radix $L$, how many $\mathcal{A}$ are there such that $(L, \mathcal{A})$ is a GNS?

Matula, 1978: In $\mathbb{Z}$ : If $|\beta|>2$, then $\beta$ is a radix of infinitely many GNSs. (For -2 there are two GNSs, otherwise zero.)

Question 2: Can the suitable alphabets be "arbitrarily sparse" in the sense that all nonzero digits are far from the origin?

## Theorem (Kovács, K.)

If $L \in \mathbb{Z}^{d \times d}$ satisfies $\rho\left(L^{-1}\right)<1 / 2$, then there are infinitely many $\mathcal{A}$ such that $(L, \mathcal{A})$ is a $G N S$ in $\mathbb{Z}^{d}$.

If one excludes $L=(-2)$ in one dimension, it suffices to assume $\rho\left(L^{-1}\right) \leq 1 / 2$ with 2 not an eigenvalue.
In a number field order $\mathcal{O}: \beta$ is a radix of infinitely many GNSs iff it is a radix of at least one GNS and $|\mathrm{N}(\beta)| \geq 3$.

Conjecture: If $|\operatorname{det} L| \neq 2$, then there are infinitely many GNSs for $L$ if and only if there is at least one.

## Theorem (K.)

Suppose that $\rho\left(L^{-1}\right)<1 / 2$ and 2 is not an eigenvalue of $L$. Then there exists a family of arbitrarily sparse GNSs except for the case when every eigenvalue of $L$ is either an integer or a non-real algebraic number of degree 2, and has geometric multiplicity 1.

The proof is based on a clever choice of infinitely many different but related vector norms.

## Theorem (Kovács, K.)

Let $L \in \mathbb{Z}^{2 \times 2}$ with non-real eigenvalues be given. Consider the family of all digit sets $\mathcal{A} \subset \mathbb{Z}^{2}$ such that $(L, \mathcal{A})$ is a GNS.
(1) The family is empty if and only if $\operatorname{det} L=1$ or $\operatorname{det}(L-I)= \pm 1$.
(2) The family is nonempty but finite if and only if $\operatorname{det} L=2$ and $\operatorname{det}(L-I) \neq \pm 1$.
(3) In all other cases, the family is infinite, i.e. there are infinitely many digit sets $\mathcal{A}$ such that $(L, \mathcal{A})$ is a GNS.

This was the hardest part - we needed to develop a new general strategy to handle this case of dimension two.

Thank you for your attention (and for all your eventual questions)! I also happily answer questions sent to krasensky (at) seznam.cz.

