Lattice-based number systems with the same radix

Jakub Krásenský joint work with Attila Kovács

Charles University (Prague)

24.5.2023

Contents

Definitions

Let R be a ring, $\beta \in R$ (radix) and $A \ni 0$ a finite subset of R (alphabet). A (β, A) -representation of $x \in R$ is

$$x = \sum_{i=0}^N eta^i a_i, \qquad$$
 where $N \in \mathbb{N}_0, a_i \in \mathcal{A}, a_N
eq 0.$

Definition

We call (β, A) a *number system (GNS)* on *R* if every nonzero $x \in R$ has a **unique** (β, A) -representation.

Which of the following are GNSs (in \mathbb{Z} or $\mathbb{Z}[i]$)? (10, {0,...,9}); (2, {0,1}); (2, {-1,0,1}); (-2, {0,1}); (3, {-1,0,1}); (10, {-5,...,5}); (1 + i, {0,1}); (-1 + i, {0,1}). Answer: The negabinary, the balanced ternary and the Penney number system.

Definitions

Let R be a ring, $\beta \in R$ (radix) and $A \ni 0$ a finite subset of R (alphabet). A (β, A) -representation of $x \in R$ is

$$x = \sum_{i=0}^N eta^i a_i, \qquad$$
 where $N \in \mathbb{N}_0, a_i \in \mathcal{A}, a_N
eq 0.$

Definition

We call (β, A) a *number system (GNS)* on *R* if every nonzero $x \in R$ has a **unique** (β, A) -representation.

Which of the following are GNSs (in \mathbb{Z} or $\mathbb{Z}[i]$)? (10, {0,...,9}); (2, {0,1}); (2, {-1,0,1}); (-2, {0,1}); (3, {-1,0,1}); (10, {-5,...,5}); (1 + i, {0,1}); (-1 + i, {0,1}). Answer: The negabinary, the balanced ternary and the Penney number system. Penney, 1965: $(-1+i,\{0,1\})$ is a GNS on $\mathbb{Z}[i].$

(For example, $-1 = \beta^4 + \beta^3 + \beta^2 + 1$ for $\beta = -1 + i$.)

Negative powers $\sum_{j=-\infty}^{N} \beta^{j} a_{j}$ allow to represent all of \mathbb{C} :

J. Krásenský (Charles Univ. (Prague))

Let (β, \mathcal{A}) be a GNS in a number field order $(\mathcal{O} \subset \mathcal{O}_K$ for a number field K). Then:

- \mathcal{A} is a FRS modulo β ,
- **2** $|\beta_i| > 1$ for every conjugate of β .
- If (1) and (2) hold, then:
 - (β, \mathcal{A}) -representations are unique.
 - **2** There exists a simple algorithm for computing them.
 - To decide the GNS property, it suffices to check finitely many elements x.

Situation in \mathbb{Z} :

- No GNS with radix 2.
- Radix -2: The only good alphabets are $\pm \{0, 1\}$.
- Good alphabets for 3: Difficult open question.

- Kátai, Szabó, 1975: Classification of GNSs in Z[i] with
 \$\mathcal{A} = \{0, 1, \ldots, n\}\$. (So-called canonical number systems (CNS).)
- Steidl, 1989: Classification of all $\beta \in \mathbb{Z}[i]$ which admit at least one GNS (β, A) .
- Kátai, 1992: Generalisation to $\mathcal{O}_{\mathcal{K}}$ for imaginary quadratic \mathcal{K} .
- K., 2015: The analogue for Hurwitz and Lipschitz integral quaternions.

In the latter three cases, the statement is as follows:

A GNS with radix β exists if and only if $|\beta| > 1$ and $|\beta - 1| \neq 1$.

Definition (GNS on a lattice, Vince, 1993)

Let Λ be a \mathbb{Z} -lattice and L a linear operator on Λ . (For our purposes WLOG $\Lambda = \mathbb{Z}^d$ and $L \in \mathbb{Z}^{d \times d}$.) Let $\mathcal{A} \ni 0$ be a finite subset of Λ . We call (β, \mathcal{A}) a *GNS* on Λ if every nonzero $x \in \Lambda$ has a **unique** representation of the form

$$x = \sum_{i=0}^{N} L^{i} a_{i},$$
 where $N \in \mathbb{N}_{0}, a_{i} \in \mathcal{A}, a_{N} \neq 0.$

Again: If (L, A) is a GNS, then:

- \mathcal{A} is a FRS modulo L;
 - in particular, $|\mathcal{A}| = |\det L|$.
- 2 L is expansive, i.e. $\rho(L^{-1}) < 1$;
- det $(L I) \neq \pm 1$. "Unit condition."

- If L is a radix of a GNS, then L is expansive $(\rho(L^{-1}) < 1)$.
- For expansive L, there is a vector norm || · || such that ||L⁻¹|| < 1; this again gives an algorithm for checking the GNS property.
- Germán, Kovács, 2007: If $ho(L^{-1}) < 1/2$, then L is a radix of some GNS.
- K., 2018: If $\rho(L^{-1}) \leq 1/2$ and 2 is not an eigenvalue, then L is a radix of some GNS.

Question: Given a radix *L*, how many A are there such that (L, A) is a GNS?

Matula, 1978: In \mathbb{Z} : If $|\beta| > 2$, then β is a radix of infinitely many GNSs. (For -2 there are two GNSs, otherwise zero.)

Question 2: Can the suitable alphabets be "arbitrarily sparse" in the sense that all nonzero digits are far from the origin?

Theorem (Kovács, K.)

If $L \in \mathbb{Z}^{d \times d}$ satisfies $\rho(L^{-1}) < 1/2$, then there are infinitely many \mathcal{A} such that (L, \mathcal{A}) is a GNS in \mathbb{Z}^d .

If one excludes L = (-2) in one dimension, it suffices to assume $\rho(L^{-1}) \leq 1/2$ with 2 not an eigenvalue.

In a number field order \mathcal{O} : β is a radix of infinitely many GNSs iff it is a radix of at least one GNS and $|N(\beta)| \geq 3$.

Conjecture: If $|\det L| \neq 2$, then there are infinitely many GNSs for L if and only if there is at least one.

Theorem (K.)

Suppose that $\rho(L^{-1}) < 1/2$ and 2 is not an eigenvalue of L. Then there exists a family of arbitrarily sparse GNSs except for the case when every eigenvalue of L is either an integer or a non-real algebraic number of degree 2, and has geometric multiplicity 1.

The proof is based on a clever choice of infinitely many different but related vector norms.

Theorem (Kovács, K.)

Let $L \in \mathbb{Z}^{2 \times 2}$ with non-real eigenvalues be given. Consider the family of all digit sets $\mathcal{A} \subset \mathbb{Z}^2$ such that (L, \mathcal{A}) is a GNS.

- The family is empty if and only if det L = 1 or det $(L I) = \pm 1$.
- ② The family is nonempty but finite if and only if det L = 2 and det(L − I) ≠ ±1.
- In all other cases, the family is infinite, i.e. there are infinitely many digit sets A such that (L, A) is a GNS.

This was the hardest part – we needed to develop a new general strategy to handle this case of dimension two.

Thank you for your attention (and for all your eventual questions)! I also happily answer questions sent to krasensky (at) seznam.cz.