On asymptotically automatic sequences

Jakub Konieczny

Camille Jordan Institute Claude Bernard University Lyon 1

Numeration Conference 22 V 2023, Liége

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, \mathbf{1}\},\$

01101001100101101001011001101001...

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \langle$$

2 Finite automaton:

if
$$n$$
 is *evil* (i.e., sum of binary digits is even),
if n is *odious* (i.e., sum of binary digits is odd).

- 3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 t(n).
- **(4)** Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.
- (a) Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1+z)^2 T(z) + (1+z)^3 T(z)^2 = 0.$$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, \mathbf{1}\},\$

01101001100101101001011001101001...

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \begin{cases} 0\\ 1 \end{cases}$$

if n is *evil* (i.e., sum of binary digits is even), if n is *odious* (i.e., sum of binary digits is odd).

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 - t(n).

(4) Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

(a) Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1+z)^{2}T(z) + (1+z)^{3}T(z)^{2} = 0.$$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, 1\}$,

01101001100101101001011001101001...

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \begin{cases} 0 \\ 1 \end{cases}$$

if n is *evil* (i.e., sum of binary digits is even), if n is *odious* (i.e., sum of binary digits is odd).

② Finite automaton:

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 - t(n).

(4) Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

(a) Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1+z)^{2}T(z) + (1+z)^{3}T(z)^{2} = 0.$$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, 1\}$,

01101001100101101001011001101001...

is a (*the*?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \begin{cases} 0 \\ 1 \end{cases}$$

if n is evil (i.e., sum of binary digits is even), if n is odious (i.e., sum of binary digits is odd).

② Finite automaton:

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 - t(n).

4 Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

(a) Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1+z)^2 T(z) + (1+z)^3 T(z)^2 = 0.$$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, 1\}$,

01101001100101101001011001101001...

is a (*the*?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \begin{cases} 0 \\ 1 \end{cases}$$

if n is *evil* (i.e., sum of binary digits is even), if n is *odious* (i.e., sum of binary digits is odd).

② Finite automaton:

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 - t(n).

4 Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

(a) Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then $z + (1+z)^2 T(z) + (1+z)^3 T(z)^2 = 0.$

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, \mathbf{1}\},\$

01101001100101101001011001101001...

is a (*the*?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

• Explicit formula:
$$t(n) = \begin{cases} 0\\ 1 \end{cases}$$

if n is evil (i.e., sum of binary digits is even), if n is odious (i.e., sum of binary digits is odd).

② Finite automaton:

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+1) = 1 - t(n).

4 Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

6 Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n) z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1+z)^2 T(z) + (1+z)^3 T(z)^2 = 0.$$

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau \left(\delta(s_0, (n)_k) \right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s₀;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau \left(\delta(s_0, (n)_k) \right)$
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0 ;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau \left(\delta(s_0, (n)_k) \right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0 ;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau \left(\delta(s_0, (n)_k) \right)$
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0 ;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau \left(\delta(s_0, (n)_k) \right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0 ;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Some notation: We let k denote the base in which we work. \longrightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; \longrightarrow no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0 ;
- a transition function $\delta \colon S \times \Sigma_k \to S;$
- an output function $\tau \colon S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

Definition (Kernel)

Let $k \geq 2$ and let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then the *k*-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} \, : \, \alpha, m \in \mathbb{N}, \ m < k^\alpha\}, \text{ where } f_{\alpha,m}(n) := f(k^\alpha n + m).$$

Examples:

• Let t be the Thue-Morse sequence, $t(n) = s_2(n) \mod 2$. Then

 $\mathcal{N}_2(t) = \{t, 1-t\}.$

• Let r(n) be the Rudin-Shapiro sequence, $r(n) = (-1)^{\# \text{ of } 11 \text{ in } (n)_2}$. Then r(2n) = r(n), r(4n+1) = r(n), r(4n+3) = -r(2n+1). Hence,

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Definition (Kernel)

Let $k \geq 2$ and let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then the *k*-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, \ m < k^{\alpha}\}, \text{ where } f_{\alpha,m}(n) := f(k^{\alpha}n + m).$$

Examples:

• Let t be the Thue-Morse sequence, $t(n) = s_2(n) \mod 2$. Then

$$\mathcal{N}_2(t) = \{t, 1-t\}.$$

• Let r(n) be the Rudin-Shapiro sequence, $r(n) = (-1)^{\# \text{ of } 11 \text{ in } (n)_2}$. Then r(2n) = r(n), r(4n+1) = r(n), r(4n+3) = -r(2n+1). Hence, $\mathcal{N}_2(r) = \{\pm r, \pm r'\}, \text{ where } r'(n) = r(2n+1).$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Definition (Kernel)

Let $k \geq 2$ and let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then the *k*-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, \ m < k^{\alpha}\}, \text{ where } f_{\alpha,m}(n) := f(k^{\alpha}n + m).$$

Examples:

• Let t be the Thue-Morse sequence, $t(n) = s_2(n) \mod 2$. Then

$$\mathcal{N}_2(t) = \{t, 1-t\}.$$

• Let r(n) be the Rudin-Shapiro sequence, $r(n) = (-1)^{\# \text{ of } 11 \text{ in } (n)_2}$. Then r(2n) = r(n), r(4n+1) = r(n), r(4n+3) = -r(2n+1). Hence, $\mathcal{N}_2(r) = \{\pm r, \pm r'\}, \text{ where } r'(n) = r(2n+1).$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Definition (Kernel)

Let $k \geq 2$ and let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then the *k*-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, \ m < k^{\alpha}\}, \text{ where } f_{\alpha,m}(n) := f(k^{\alpha}n + m).$$

Examples:

• Let t be the Thue-Morse sequence, $t(n) = s_2(n) \mod 2$. Then

$$\mathcal{N}_2(t) = \{t, 1-t\}.$$

• Let r(n) be the Rudin-Shapiro sequence, $r(n) = (-1)^{\# \text{ of } 11 \text{ in } (n)_2}$. Then r(2n) = r(n), r(4n+1) = r(n), r(4n+3) = -r(2n+1). Hence, $\mathcal{N}_2(r) = \{\pm r, \pm r'\}, \text{ where } r'(n) = r(2n+1).$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

• Two sequences $f, g \colon \mathbb{N} \to \Omega$ are asymptotically equal, denoted by

 $f(n) \simeq g(n),$

if they differ on a set with asymptotic density zero:

 $\# \left\{ n < N \ : \ f(n) \neq g(n) \right\} / N \to 0 \text{ as } N \to \infty.$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

 $f(n+m) \simeq f(n).$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \to \Omega$ such that

$$f(n) \simeq \tilde{f}(n).$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = \lfloor \sqrt{n} \rfloor \mod 2$.

• Two sequences $f, g: \mathbb{N} \to \Omega$ are asymptotically equal, denoted by

 $f(n) \simeq g(n),$

if they differ on a set with asymptotic density zero:

 $\# \left\{ n < N \, : \, f(n) \neq g(n) \right\} / N \rightarrow 0 \text{ as } N \rightarrow \infty.$

 A sequence f: N→ Ω is asymptotically invariant under shift by m∈ N (or asymptotically shift-invariant, if m does not matter) if

 $f(n+m) \simeq f(n).$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \to \Omega$ such that

$$f(n) \simeq \tilde{f}(n).$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = \lfloor \sqrt{n} \rfloor \mod 2$.

• Two sequences $f, g: \mathbb{N} \to \Omega$ are asymptotically equal, denoted by

 $f(n) \simeq g(n),$

if they differ on a set with asymptotic density zero:

 $\# \left\{ n < N \, : \, f(n) \neq g(n) \right\} / N \rightarrow 0 \text{ as } N \rightarrow \infty.$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

 $f(n+m) \simeq f(n).$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \to \Omega$ such that

$$f(n) \simeq \tilde{f}(n).$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = \lfloor \sqrt{n} \rfloor \mod 2$.

• Two sequences $f, g: \mathbb{N} \to \Omega$ are asymptotically equal, denoted by

 $f(n) \simeq g(n),$

if they differ on a set with asymptotic density zero:

$$\# \left\{ n < N : f(n) \neq g(n) \right\} / N \to 0 \text{ as } N \to \infty.$$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$f(n+m) \simeq f(n).$$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \to \Omega$ such that

$$f(n) \simeq \tilde{f}(n).$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = \lfloor \sqrt{n} \rfloor \mod 2$.

• Two sequences $f, g: \mathbb{N} \to \Omega$ are asymptotically equal, denoted by

 $f(n) \simeq g(n),$

if they differ on a set with asymptotic density zero:

$$\# \left\{ n < N \ : \ f(n) \neq g(n) \right\} / N \to 0 \text{ as } N \to \infty.$$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$f(n+m) \simeq f(n).$$

• A sequence $f: \mathbb{N} \to \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \to \Omega$ such that

$$f(n) \simeq \tilde{f}(n).$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = \lfloor \sqrt{n} \rfloor \mod 2$.

Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \to \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_k(f)/\simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example

Let $f: \mathbb{N} \to \Omega$ be k-automatic and let $g: \mathbb{N} \to \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

$$f(n) = f\left(\left[\underbrace{11\dots 1}_{\lambda(n)} 0 * * \dots *\right]_2\right) = \begin{cases} 1 & \text{if } \lambda(n) \text{ is prime,} \\ 0 & \text{otherwise.} \end{cases}$$

Then f is asymptotically 2-automatic.

Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \to \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_k(f)/\simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example

Let $f : \mathbb{N} \to \Omega$ be k-automatic and let $g : \mathbb{N} \to \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

$$f(n) = f\left(\left[\underbrace{11\dots 1}_{\lambda(n)} 0 * * \dots *\right]_2\right) = \begin{cases} 1 & \text{if } \lambda(n) \text{ is prime,} \\ 0 & \text{otherwise.} \end{cases}$$

Then f is asymptotically 2-automatic.

Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \to \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_k(f)/\simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example

Let $f : \mathbb{N} \to \Omega$ be k-automatic and let $g : \mathbb{N} \to \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

$$f(n) = f\left(\left[\underbrace{11\dots 1}_{\lambda(n)} 0 * * \dots *\right]_2\right) = \begin{cases} 1 & \text{if } \lambda(n) \text{ is prime,} \\ 0 & \text{otherwise.} \end{cases}$$

Then f is asymptotically 2-automatic.

Why study the class of asymptotically automatic sequences?

• "Because it's there."

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Why study the class of asymptotically automatic sequences?

• "Because it's there."

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Why study the class of asymptotically automatic sequences?

• "Because it's there."

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Why study the class of asymptotically automatic sequences?

• "Because it's there."

- George Mallory

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)

• To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Why study the class of asymptotically automatic sequences?

• "Because it's there."

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \to \Omega$, $f': \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f': \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho: \Omega \to \Omega'$ be any map. Then $\rho \circ f: \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

- Let $f \colon \mathbb{N} \to \Omega$ be a sequence.
 - If f is asymptotically k-automatic then each restriction f'(n) = f(an + b) (a, b ∈ N) of f to an arithmetic progression is asymptotically k-automatic.
 - Conversely, if there exists a > 0 such that f'(n) = (an + b) is asymptotically k-automatic for each $0 \le b < a$, then f is asymptotically k-automatic.

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \to \Omega$, $f': \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f': \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho: \Omega \to \Omega'$ be any map. Then $\rho \circ f: \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

- Let $f \colon \mathbb{N} \to \Omega$ be a sequence.
 - If f is asymptotically k-automatic then each restriction f'(n) = f(an + b) (a, b ∈ N) of f to an arithmetic progression is asymptotically k-automatic.
 - Conversely, if there exists a > 0 such that f'(n) = (an + b) is asymptotically k-automatic for each $0 \le b < a$, then f is asymptotically k-automatic.

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \to \Omega$, $f': \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f': \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho: \Omega \to \Omega'$ be any map. Then $\rho \circ f: \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let $f: \mathbb{N} \to \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction f'(n) = f(an + b) (a, b ∈ N) of f to an arithmetic progression is asymptotically k-automatic.
- Conversely, if there exists a > 0 such that f'(n) = (an + b) is asymptotically k-automatic for each $0 \le b < a$, then f is asymptotically k-automatic.

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \to \Omega$, $f': \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f': \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho: \Omega \to \Omega'$ be any map. Then $\rho \circ f: \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

- Let $f \colon \mathbb{N} \to \Omega$ be a sequence.
 - If f is asymptotically k-automatic then each restriction f'(n) = f(an + b) (a, b ∈ N) of f to an arithmetic progression is asymptotically k-automatic.
 - Conversely, if there exists a > 0 such that f'(n) = (an + b) is asymptotically k-automatic for each $0 \le b < a$, then f is asymptotically k-automatic.

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \to \Omega$, $f': \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f': \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho: \Omega \to \Omega'$ be any map. Then $\rho \circ f: \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let $f \colon \mathbb{N} \to \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction f'(n) = f(an + b) $(a, b \in \mathbb{N})$ of f to an arithmetic progression is asymptotically k-automatic.
- Conversely, if there exists a > 0 such that f'(n) = (an + b) is asymptotically k-automatic for each $0 \le b < a$, then f is asymptotically k-automatic.

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f \colon \mathbb{N} \to \Omega$, the following conditions are equivalent.

1) f is asymptotically k-automatic;

2 there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1} \colon \mathbb{N} \to \Omega$ and a k-automatic map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$
- There is a unique map $\phi: \Sigma_k^* \to \Sigma_d$ such that (*) holds
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

- **1** f is asymptotically k-automatic;
- there exists d∈ N, f₀, f₁, ..., f_{d-1}: N → Ω and a k-automatic map φ: Σ^{*}_k → Σ_d
 such that for each u ∈ Σ^{*}_k with length α := |u| we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$
(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

- **1** f is asymptotically k-automatic;
- 2 there exists d∈ N, f₀, f₁, ..., f_{d-1}: N → Ω and a k-automatic map φ: Σ^{*}_k → Σ_d such that for each u ∈ Σ^{*}_k with length α := |u| we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$
(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

- **1** f is asymptotically k-automatic;
- 2 there exists d ∈ N, f₀, f₁, ..., f_{d-1}: N → Ω and a k-automatic map φ: Σ^{*}_k → Σ_d such that for each u ∈ Σ^{*}_k with length α := |u| we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$
(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

- **1** f is asymptotically k-automatic;
- 2 there exists d ∈ N, f₀, f₁, ..., f_{d-1}: N → Ω and a k-automatic map φ: Σ^{*}_k → Σ_d such that for each u ∈ Σ^{*}_k with length α := |u| we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$
(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d.$

Recall that $\Sigma_k = \{0, 1, \dots, k-1\}$ and $\Sigma_k^* =$ words over Σ_k .

Definition

The k-kernel of a map $\phi \colon \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

 $\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

- **1** f is asymptotically k-automatic;
- **2** there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1} \colon \mathbb{N} \to \Omega$ and a k-automatic map $\phi \colon \Sigma_k^* \to \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f(k^{\alpha}n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$
(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi: \Sigma_k^* \to \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k = m^a, \ell = m^b \ (m, a, b \in \mathbb{N}).$

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ -automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \to \Omega$ is eventually periodic if there exist n_0 and m > 0, such that f(n+m) = f(n) for all $n \ge n_0$.

Fact

Let $f: \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k = m^a, \ell = m^b \ (m, a, b \in \mathbb{N}).$

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ -automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \to \Omega$ is eventually periodic if there exist n_0 and m > 0, such that f(n+m) = f(n) for all $n \ge n_0$.

Fact

Let $f: \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k = m^a, \ell = m^b \ (m, a, b \in \mathbb{N}).$

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ -automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \to \Omega$ is eventually periodic if there exist n_0 and m > 0, such that f(n+m) = f(n) for all $n \ge n_0$.

Fact

Let $f: \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k = m^a, \ell = m^b \ (m, a, b \in \mathbb{N}).$

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ -automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \to \Omega$ is eventually periodic if there exist n_0 and m > 0, such that f(n+m) = f(n) for all $n \ge n_0$.

Fact

Let $f: \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Cobham's theorem

Theorem (Cobham, 1969)

Let $k,\ell\geq 2$ be two bases and let $f\colon\mathbb{N}\to\Omega$ be a sequence. If f is k-automatic and ℓ -automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- \bullet the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$\emptyset, \qquad \{k^a : a \ge 1\} \text{ for some } k \ge 2, \qquad \mathbb{N}.$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue–Morse sequence.

Cobham's theorem

Theorem (Cobham, 1969)

Let $k,\ell\geq 2$ be two bases and let $f\colon\mathbb{N}\to\Omega$ be a sequence. If f is k-automatic and ℓ -automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$\emptyset, \qquad \qquad \{k^a \, : \, a \ge 1\} \text{ for some } k \ge 2, \qquad \qquad \mathbb{N}.$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue–Morse sequence.

Cobham's theorem

Theorem (Cobham, 1969)

Let $k,\ell\geq 2$ be two bases and let $f\colon\mathbb{N}\to\Omega$ be a sequence. If f is k-automatic and ℓ -automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- \bullet the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$\emptyset, \qquad \qquad \{k^a \, : \, a \ge 1\} \text{ for some } k \ge 2, \qquad \qquad \mathbb{N}.$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue–Morse sequence.

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have α₁(p₁ − 1) = α₂(p₂ − 1) = 2. Deshouillers and Ruzsa showed that ℓ₁₂(n!) ≃ f(n) for a 3-automatic sequence f: N → {4,8}. Also, 1_y(ℓ₁₂(n!)) is not automatic for y = 3, 6, 9, and in particular, ℓ₁₂(n!) is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have $\alpha_1(p_1 1) = \alpha_2(p_2 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f \colon \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for y = 3, 6, 9, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have α₁(p₁ − 1) = α₂(p₂ − 1) = 2. Deshouillers and Ruzsa showed that ℓ₁₂(n!) ≃ f(n) for a 3-automatic sequence f: N → {4,8}. Also, 1_y(ℓ₁₂(n!)) is not automatic for y = 3, 6, 9, and in particular, ℓ₁₂(n!) is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have $\alpha_1(p_1 1) = \alpha_2(p_2 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f \colon \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for y = 3, 6, 9, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

 $\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have α₁(p₁ − 1) = α₂(p₂ − 1) = 2. Deshouillers and Ruzsa showed that ℓ₁₂(n!) ≃ f(n) for a 3-automatic sequence f: N → {4,8}. Also, 1_y(ℓ₁₂(n!)) is not automatic for y = 3, 6, 9, and in particular, ℓ₁₂(n!) is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have α₁(p₁ − 1) = α₂(p₂ − 1) = 2. Deshouillers and Ruzsa showed that ℓ₁₂(n!) ≃ f(n) for a 3-automatic sequence f: N → {4,8}. Also, 1_y(ℓ₁₂(n!)) is not automatic for y = 3, 6, 9, and in particular, ℓ₁₂(n!) is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have $\alpha_1(p_1 1) = \alpha_2(p_2 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f \colon \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for y = 3, 6, 9, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have $\alpha_1(p_1 1) = \alpha_2(p_2 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f \colon \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for y = 3, 6, 9, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n!)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1-1) \ge \alpha_2(p_2-1) \ge \cdots \ge \alpha_r(p_r-1).$$

- Rationale: $\nu_p(n!) = \frac{n s_p(n)}{p 1} \approx \frac{n}{p 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For k = 12 we have $\alpha_1(p_1 1) = \alpha_2(p_2 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f \colon \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for y = 3, 6, 9, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_y(\ell_{12}(n!))$ is not automatic for y = 4, 8.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ -automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ -automatic. Then f is asymptotically periodic.

Asymptotic Cobham's theorem \implies Density Cobham's theorem.

Let $f: \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ -automatic. Hence, by asymptotic Cobham's theorem, f is asymptotically periodic.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ -automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ -automatic. Then f is asymptotically periodic.

Asymptotic Cobham's theorem \implies Density Cobham's theorem

Let $f: \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ -automatic. Hence, by asymptotic Cobham's theorem, f is asymptotically periodic.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ -automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \to \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ -automatic. Then f is asymptotically periodic.

Asymptotic Cobham's theorem \implies Density Cobham's theorem.

Let $f: \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \to \Omega$ be an ℓ -automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ -automatic. Hence, by asymptotic Cobham's theorem, f is asymptotically periodic.

Asymptotic versions of Cobham's theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f \colon \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ -automatic. Then f is asymptotically periodic.

Unfortunately(?), this is false.

Example

Let us order all integers of the form $2^{\alpha}3^{\beta}$ in increasing order

$$\mathcal{H} := \{H_0 < H_1 < H_2 < \cdots\} := \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$

Let $H_i = 2^{\alpha_i} 3^{\beta_i}$ and define $f \colon \mathbb{N} \to \{-1, +1\}$ by

 $f(n) := (-1)^{\alpha_i + \beta_i}$ for $n \in [H_i, H_{i+1})$ and $i \ge 0$.

We will show that f is asymptotically 2- and 3-automatic, but not asymptotically periodic.

Asymptotic versions of Cobham's theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f \colon \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ -automatic. Then f is asymptotically periodic.

Unfortunately(?), this is false.

Example

Let us order all integers of the form $2^{\alpha}3^{\beta}$ in increasing order

$$\mathcal{H} := \{H_0 < H_1 < H_2 < \cdots\} := \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$

Let $H_i = 2^{\alpha_i} 3^{\beta_i}$ and define $f \colon \mathbb{N} \to \{-1, +1\}$ by

$$f(n) := (-1)^{\alpha_i + \beta_i}$$
 for $n \in [H_i, H_{i+1})$ and $i \ge 0$.

We will show that f is asymptotically 2- and 3-automatic, but not asymptotically periodic.

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha} 3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i} 3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

Lemma

$f(n+1) \simeq f(n)$ $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

Lemma

 $f(n+1) \simeq f(n)$ $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

Lemma

$f(n+1) \simeq f(n)$ $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}] = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))].$
- Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

Lemma

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$

• Thus, the number of "bad" n's in $\left[\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Reminder about notation:

$$\mathcal{H} = \{H_0 < H_1 < H_2 < \dots\} = \{2^{\alpha}3^{\beta} : \alpha, \beta \ge 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \dots\}.$$
$$H_i = 2^{\alpha_i}3^{\beta_i}, \qquad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \ge 0.$$

Fact: $H_{i+1}/H_i \to 1$ as $i \to \infty$. *Proof:* Kronecker equidistribution theorem.

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n)$

- We only discuss $f(2n) \simeq -f(n)$. Consider any $n \in [H_i, H_{i+1})$ with f(2n) = f(n).
- We have $2n \in [2H_i, 2H_{i+1})$, where $2H_i =: H_j \in \mathcal{H}$ and $2H_{i+1} =: H_{j'} \in \mathcal{H}$.
- If $2n \in [H_j, H_{j+1})$ then $f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n)$, so $j' \ge j+2$.
- Since $H_i < H_{j+1}/2 < H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3.
- Since $[H_j, H_{j'})$ cannot contain two powers of 3, we have j' = j + 2.
- Summarising, we have $2n \in [H_{j+1}, H_{j+2}) = [3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))).$
- Thus, the number of "bad" n's in $\left(\frac{1}{2}3^{\beta}, \frac{1}{2}3^{\beta+1}\right)$ is $o(3^{\beta})$. Take sum w.r.t. β .

Example in bases 2 and 3 $\,$

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\#(\mathcal{N}_2(f)/\simeq) \leq 2$ and $\#(\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\# (\mathcal{N}_2(f)/\simeq) \leq 2$ and $\# (\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\#(\mathcal{N}_2(f)/\simeq) \leq 2$ and $\#(\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\# (\mathcal{N}_2(f)/\simeq) \leq 2$ and $\# (\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

• Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .

- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\# (\mathcal{N}_2(f)/\simeq) \leq 2$ and $\# (\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\overline{f}(2n) \simeq -\overline{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\# (\mathcal{N}_2(f)/\simeq) \leq 2$ and $\# (\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

Reminder:

$$f(n+1) \simeq f(n)$$
 $f(2n) \simeq -f(n)$ $f(3n) \simeq -f(n).$

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, $\#(\mathcal{N}_2(f)/\simeq) \leq 2$ and $\#(\mathcal{N}_3(f)/\simeq) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f} .
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n) = c = \pm 1$ is constant.
- Since $f(2n) \simeq -f(n)$, also $\tilde{f}(2n) \simeq -\tilde{f}(n)$, so c = -c, but this is impossible.

For a sequence $f \colon \mathbb{N} \to \Omega$, put $\mathcal{B}_{aut}(f) := \{k \in \mathbb{N} : f \text{ is } k\text{-automatic}\}$.

Theorem (Cobham; alternative phrasing)

Let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then $\mathcal{B}_{aut}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\{k^a : a \ge 1\}$ for some $k \ge 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $\mathcal{B}_{asy}(f) := \{k \in \mathbb{N} : f \text{ is asymptotically } k \text{-automatic}\}.$

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then one of the following holds:

- $\mathcal{B}_{aut}(f) = \emptyset$ (i.e., f is not automatic);
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \{k^a : a \in \mathbb{N}\} \text{ for some } k \ge 2;$
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \mathbb{N}$ (i.e., f is asymptotically periodic).

For a sequence $f \colon \mathbb{N} \to \Omega$, put $\mathcal{B}_{aut}(f) := \{k \in \mathbb{N} : f \text{ is } k\text{-automatic}\}$.

Theorem (Cobham; alternative phrasing)

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then $\mathcal{B}_{aut}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\{k^a : a \ge 1\}$ for some $k \ge 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $\mathcal{B}_{asy}(f) := \{k \in \mathbb{N} : f \text{ is asymptotically } k \text{-automatic}\}$.

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then one of the following holds:

- $\mathcal{B}_{aut}(f) = \emptyset$ (i.e., f is not automatic);
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \{k^a : a \in \mathbb{N}\} \text{ for some } k \ge 2;$
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \mathbb{N}$ (i.e., f is asymptotically periodic).

For a sequence $f \colon \mathbb{N} \to \Omega$, put $\mathcal{B}_{aut}(f) := \{k \in \mathbb{N} : f \text{ is } k\text{-automatic}\}$.

Theorem (Cobham; alternative phrasing)

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then $\mathcal{B}_{aut}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\{k^a : a \ge 1\}$ for some $k \ge 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $\mathcal{B}_{asy}(f) := \{k \in \mathbb{N} : f \text{ is asymptotically } k\text{-automatic}\}.$

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let $f \colon \mathbb{N} \to \Omega$ be a sequence. Then one of the following holds:

- $\mathcal{B}_{aut}(f) = \emptyset$ (i.e., f is not automatic);
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \{k^a : a \in \mathbb{N}\} \text{ for some } k \ge 2;$
- $\mathcal{B}_{asy}(f) = \mathcal{B}_{aut}(f) = \mathbb{N}$ (i.e., f is asymptotically periodic).

Lemma

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{asy}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{asy}(f)$ then $k\ell \in \mathcal{B}_{asy}(f)$;
- if $k, \ell \in \mathcal{B}_{asy}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{asy}(f)$;
- if $k \in \mathcal{B}_{asy}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{asy}(f)$.

Corollary

Let $f: \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{n \in \mathcal{P}} \mathbb{Q}$ such that

 $\mathcal{B}_{asy}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$

Lemma

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{asy}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{asy}(f)$ then $k\ell \in \mathcal{B}_{asy}(f)$;
- if $k, \ell \in \mathcal{B}_{asy}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{asy}(f)$;
- if $k \in \mathcal{B}_{asy}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{asy}(f)$.

Corollary

Let $f: \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{n \in \mathcal{P}} \mathbb{Q}$ such that

 $\mathcal{B}_{asy}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$

Lemma

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{asy}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{asy}(f)$ then $k\ell \in \mathcal{B}_{asy}(f)$;
- if $k, \ell \in \mathcal{B}_{asy}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{asy}(f)$;
- if $k \in \mathcal{B}_{asy}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{asy}(f)$.

Corollary

Let $f \colon \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

 $\mathcal{B}_{asy}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$

Lemma

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{asy}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{asy}(f)$ then $k\ell \in \mathcal{B}_{asy}(f)$;
- if $k, \ell \in \mathcal{B}_{asy}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{asy}(f)$;
- if $k \in \mathcal{B}_{asy}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{asy}(f)$.

Corollary

Let $f: \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that $\mathcal{B}_{asy}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$

Open problems

Conjecture

Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f \colon \mathbb{N} \to \Omega$ such that

$$\mathcal{B}_{asy}(f) = \left\{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \right\}.$$

Question

Are the following situations possible?

- $\mathcal{B}_{asy}(f) = \{2^a 3^b : a, b \in \mathbb{N}\}$ (we know: $\mathcal{B}_{asy}(f) \supseteq \{2^a 3^b : a, b \in \mathbb{N}\}$ is possible);
- $\mathcal{B}_{asy}(f) = \{2^a 3^b 5^c : a, b, c \in \mathbb{N}\};$
- $\mathcal{B}_{asy}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \ge 2$.

Open problems

Conjecture

Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f \colon \mathbb{N} \to \Omega$ such that

$$\mathcal{B}_{asy}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$$

Question

Are the following situations possible?

• $\mathcal{B}_{asy}(f) = \left\{2^a 3^b : a, b \in \mathbb{N}\right\}$ (we know: $\mathcal{B}_{asy}(f) \supseteq \left\{2^a 3^b : a, b \in \mathbb{N}\right\}$ is possible);

•
$$\mathcal{B}_{asy}(f) = \{2^a 3^b 5^c : a, b, c \in \mathbb{N}\};\$$

• $\mathcal{B}_{asy}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \ge 2$.

Open problems

Conjecture

Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f \colon \mathbb{N} \to \Omega$ such that

$$\mathcal{B}_{asy}(f) = \left\{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \right\}.$$

Question

Are the following situations possible?

• $\mathcal{B}_{asy}(f) = \left\{2^a 3^b : a, b \in \mathbb{N}\right\}$ (we know: $\mathcal{B}_{asy}(f) \supseteq \left\{2^a 3^b : a, b \in \mathbb{N}\right\}$ is possible);

•
$$\mathcal{B}_{asy}(f) = \{2^a 3^b 5^c : a, b, c \in \mathbb{N}\};\$$

• $\mathcal{B}_{asy}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \ge 2$.

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi: \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta}n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi: \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta}n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi: \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta} n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi: \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta} n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi \colon \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta}n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi: \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta} n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus

 $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi \colon \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta}n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus

 $f(k^{\alpha}n+m) \simeq f_{\phi((m)_k)}(n) \qquad f(\ell^{\beta}n+m) \simeq f_{\psi((m)_{\ell})}(n) \qquad \text{for each } m \in \mathbb{N}.$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ -automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq; \vec{f} := (f_0, f_1, \ldots, f_{d-1}) \colon \mathbb{N} \to \Omega^d;$
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f)/\simeq; \vec{g} := (g_0, g_1, \ldots, g_{e-1}): \mathbb{N} \to \Omega^e;$
- $\phi: \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^{\alpha}n + [u]_k) \simeq f_{\phi(u)}(n);$
- $\psi \colon \Sigma_{\ell}^* \to \Sigma_e$ is ℓ -automatic and $f\left(\ell^{\beta}n + [v]_{\ell}\right) \simeq f_{\psi(v)}(n);$
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 - $f\left(k^{\alpha}n+m\right)\simeq f_{\phi((m)_k)}(n) \qquad f\left(\ell^{\beta}n+m\right)\simeq f_{\psi((m)_\ell)}(n) \qquad \text{for each } m\in\mathbb{N}.$

Lemma

Let
$$\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d, \ \vec{y} \in \Omega^e \ and \ E := \left\{ n \in \mathbb{N} \ : \ \vec{f}(\ell^\beta n) = \vec{x}, \ \vec{g}(k^\alpha n) = \vec{y} \right\}$$
. Suppose that $\bar{d}(E) > 0$. Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^\alpha, \ell^\beta)$.

Proof of Lemma:

•
$$f(k^{\alpha}\ell^{\beta}n+m) = f_{\phi((m)_k)}(\ell^{\beta}n) = x_{\phi((m)_k)}$$
 for almost all $n \in E$.

•
$$f(k^{\alpha}\ell^{\beta}n+m) = g_{\psi((m)_{\ell})}(k^{\alpha}n) = y_{\psi((m)_{\ell})}$$
 for almost all $n \in E$.

• Since $\overline{d}(E) > 0$, there is at least one $n \in \mathbb{N}$ such that

$$x_{\phi((m)_k)} = f(k^{\alpha} \ell^{\beta} n + m) = y_{\psi((m)_{\ell})}.$$

Lemma

Let
$$\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d, \ \vec{y} \in \Omega^e \ and \ E := \left\{ n \in \mathbb{N} : \ \vec{f}(\ell^\beta n) = \vec{x}, \ \vec{g}(k^\alpha n) = \vec{y} \right\}.$$
 Suppose that $\bar{d}(E) > 0$. Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^\alpha, \ell^\beta)$.

Proof of Lemma:

•
$$f(k^{\alpha}\ell^{\beta}n+m) = f_{\phi((m)_k)}(\ell^{\beta}n) = x_{\phi((m)_k)}$$
 for almost all $n \in E$.

•
$$f(k^{\alpha}\ell^{\beta}n+m) = g_{\psi((m)_{\ell})}(k^{\alpha}n) = y_{\psi((m)_{\ell})}$$
 for almost all $n \in E$.

• Since $\overline{d}(E) > 0$, there is at least one $n \in \mathbb{N}$ such that

$$x_{\phi((m)_k)} = f(k^{\alpha} \ell^{\beta} n + m) = y_{\psi((m)_\ell)}.$$

Lemma

Let
$$\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d, \ \vec{y} \in \Omega^e \ and \ E := \left\{ n \in \mathbb{N} \ : \ \vec{f}(\ell^\beta n) = \vec{x}, \ \vec{g}(k^\alpha n) = \vec{y} \right\}$$
. Suppose that $\overline{d}(E) > 0$. Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^\alpha, \ell^\beta)$.

Proof of Lemma:

•
$$f(k^{\alpha}\ell^{\beta}n+m) = f_{\phi((m)_k)}(\ell^{\beta}n) = x_{\phi((m)_k)}$$
 for almost all $n \in E$.

•
$$f(k^{\alpha}\ell^{\beta}n+m) = g_{\psi((m)_{\ell})}(k^{\alpha}n) = y_{\psi((m)_{\ell})}$$
 for almost all $n \in E$.

• Since $\overline{d}(E) > 0$, there is at least one $n \in \mathbb{N}$ such that

$$x_{\phi((m)_k)} = f(k^{\alpha} \ell^{\beta} n + m) = y_{\psi((m)_{\ell})}.$$

Lemma

Let
$$\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d, \ \vec{y} \in \Omega^e \ and \ E := \left\{ n \in \mathbb{N} \ : \ \vec{f}(\ell^\beta n) = \vec{x}, \ \vec{g}(k^\alpha n) = \vec{y} \right\}$$
. Suppose that $\overline{d}(E) > 0$. Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^\alpha, \ell^\beta)$.

Proof of Lemma:

•
$$f(k^{\alpha}\ell^{\beta}n+m) = f_{\phi((m)_k)}(\ell^{\beta}n) = x_{\phi((m)_k)}$$
 for almost all $n \in E$.

•
$$f(k^{\alpha}\ell^{\beta}n+m) = g_{\psi((m)_{\ell})}(k^{\alpha}n) = y_{\psi((m)_{\ell})}$$
 for almost all $n \in E$.

• Since $\bar{d}(E) > 0$, there is at least one $n \in \mathbb{N}$ such that

$$x_{\phi((m)_k)} = f(k^{\alpha} \ell^{\beta} n + m) = y_{\psi((m)_{\ell})}.$$

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d \ and \ \vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_{\ell})}$ is eventually periodic.

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d \ and \ \vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Lemma

Let $\alpha, \beta \in \mathbb{N}, \ \vec{x} \in \Omega^d \ and \ \vec{y} \in \Omega^e$. Suppose that

$$\bar{l}\left(\left\{n\in\mathbb{N}\,:\,\vec{f}(\ell^{\beta}n)=\vec{x},\;\vec{g}(k^{\alpha}n)=\vec{y}\right\}\right)>0. \tag{*}$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \le m < \min(k^{\alpha}, \ell^{\beta})$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ -automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ -automatic.
- By Cobham's theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each "good" $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n+q) = f(n),$$

provided that there exists a decomposition $n = k^{\alpha}n' + m$ where $m < k^{\alpha} - q$ and $\vec{x} := \vec{f}(n')$ is "good".

Proof: $f(k^{\alpha}n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^{\alpha}n' + m).$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^{\alpha}n' + m$ where $n', m, \alpha \in \mathbb{N}, m < k^{\alpha} - q, f(n')$ is "good".

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each "good" $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n+q) = f(n),$$

provided that there exists a decomposition $n = k^{\alpha}n' + m$ where $m < k^{\alpha} - q$ and $\vec{x} := \vec{f}(n')$ is "good".

Proof:
$$f(k^{\alpha}n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^{\alpha}n' + m).$$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^{\alpha}n' + m$ where $n', m, \alpha \in \mathbb{N}, m < k^{\alpha} - q, \ \vec{f}(n')$ is "good".

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each "good" $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n+q) = f(n),$$

provided that there exists a decomposition $n = k^{\alpha}n' + m$ where $m < k^{\alpha} - q$ and $\vec{x} := \vec{f}(n')$ is "good".

Proof:
$$f(k^{\alpha}n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^{\alpha}n' + m).$$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^{\alpha}n' + m$ where $n', m, \alpha \in \mathbb{N}, m < k^{\alpha} - q, \vec{f}(n')$ is "good".

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each "good" $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n+q) = f(n),$$

provided that there exists a decomposition $n = k^{\alpha}n' + m$ where $m < k^{\alpha} - q$ and $\vec{x} := \vec{f}(n')$ is "good".

Proof:
$$f(k^{\alpha}n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^{\alpha}n' + m).$$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^{\alpha}n' + m$ where $n', m, \alpha \in \mathbb{N}, m < k^{\alpha} - q, \vec{f}(n')$ is "good".

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0$$
 for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0$$
 for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0$$
 for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g \colon \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

 $g(k^{\alpha}n_0 + m) = 0$ for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

 $g(k^{\alpha}n_0 + m) = 0$ for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f \colon \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0$$
 for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \ge 1$;
- To simplify, assume that q = 1.

Lemma

Let $g: \mathbb{N} \to \{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0$$
 for all $\alpha \in \mathbb{N}, \ 0 \le m < k^{\alpha}$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

 $\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

 $\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

 $\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta]$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

 $\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta]$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

 $\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta]$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta]$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.

• Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 - i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ -automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0+1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α .

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus f(n) = c for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, f(n) = c for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{ \log_k(n_0) \}$ and $\delta := \log_k(1 + 1/n_0)$.

• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is "nice" if f(n) = c for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^{\beta} n) \simeq f(\ell^{\gamma} n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is "nice", where $\mu_i := \mu_0 i\theta \mod 1$.

Frequencies

Definition

Let $f: \mathbb{N} \to \Omega$, $\omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$\begin{aligned} \operatorname{freq}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{N} \cdot \# \left\{ n < N \ : \ f(n) = \omega \right\}, \\ \operatorname{freq}_{\log}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n+1}. \end{aligned}$$

Proposition (Frequencies of symbols in automatic sequences)

Let $f \colon \mathbb{N} \to \Omega$ be automatic and $\omega \in \Omega$. Then

- the logarithmic frequency $\operatorname{freq}_{\log}(f;\omega)$ exists;
- if the frequency $freq(f; \omega)$ exists then it is rational.

The asymptotic analogue is utterly false.

Frequencies

Definition

Let $f: \mathbb{N} \to \Omega$, $\omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$\begin{aligned} \operatorname{freq}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{N} \cdot \# \left\{ n < N : f(n) = \omega \right\}, \\ \operatorname{freq}_{\log}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n+1}. \end{aligned}$$

Proposition (Frequencies of symbols in automatic sequences)

- Let $f \colon \mathbb{N} \to \Omega$ be automatic and $\omega \in \Omega$. Then
 - the logarithmic frequency $\operatorname{freq}_{\log}(f;\omega)$ exists;
 - if the frequency $\operatorname{freq}(f;\omega)$ exists then it is rational.

The asymptotic analogue is utterly false.

Frequencies

Definition

Let $f: \mathbb{N} \to \Omega$, $\omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$\begin{aligned} \operatorname{freq}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{N} \cdot \# \left\{ n < N : f(n) = \omega \right\}, \\ \operatorname{freq}_{\log}(f;\omega) &:= \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n+1}. \end{aligned}$$

Proposition (Frequencies of symbols in automatic sequences)

- Let $f \colon \mathbb{N} \to \Omega$ be automatic and $\omega \in \Omega$. Then
 - the logarithmic frequency $\operatorname{freq}_{\log}(f;\omega)$ exists;
 - if the frequency $freq(f; \omega)$ exists then it is rational.

The asymptotic analogue is utterly false.

Frequencies

Proposition

There exists an asymptotically 2-automatic sequence $f \colon \mathbb{N} \to \{0, 1\}$ such that

$$0 = \liminf_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} < \limsup_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} = 1.$$

Proposition

For each $\theta \in [0, 1]$ there exists an asymptotically 2-automatic sequence $f \colon \mathbb{N} \to \{0, 1\}$ such that $\operatorname{freq}(f; 1) = \theta$.

Frequencies

Proposition

There exists an asymptotically 2-automatic sequence $f \colon \mathbb{N} \to \{0, 1\}$ such that

$$0 = \liminf_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} < \limsup_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} = 1.$$

Proposition

For each $\theta \in [0, 1]$ there exists an asymptotically 2-automatic sequence $f \colon \mathbb{N} \to \{0, 1\}$ such that $\operatorname{freq}(f; 1) = \theta$.

• We can write the binary expansion of any $n \in \mathbb{N}$ as

$$(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},$$

where r(n) ∈ N, each u_i⁽ⁿ⁾ ends with 1, |u_i⁽ⁿ⁾|₁ = i, and |v⁽ⁿ⁾|₁ ≤ r(n).
We always have r(2n) = r(n), and the expansion of 2n takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).$$

• We usually have r(2n+1) = r(n), and the expansion of 2n+1 takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).$$

This is the case unless $|v^{(n)}|_1 = r(n)$.

• Thus, for any $F: \Sigma_2^* 1 \to \Omega$, the sequence $f: \mathbb{N} \to \Omega$ given by

$$f(n) = F(u_{r(n)}^{(n)})$$

• We can write the binary expansion of any $n \in \mathbb{N}$ as

$$(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},$$

where r(n) ∈ N, each u_i⁽ⁿ⁾ ends with 1, |u_i⁽ⁿ⁾|₁ = i, and |v⁽ⁿ⁾|₁ ≤ r(n).
We always have r(2n) = r(n), and the expansion of 2n takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).$$

• We usually have r(2n + 1) = r(n), and the expansion of 2n + 1 takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).$$

This is the case unless $|v^{(n)}|_1 = r(n)$.

• Thus, for any $F: \Sigma_2^* 1 \to \Omega$, the sequence $f: \mathbb{N} \to \Omega$ given by

$$f(n) = F(u_{r(n)}^{(n)})$$

• We can write the binary expansion of any $n \in \mathbb{N}$ as

$$(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},$$

where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \leq r(n)$.

• We always have r(2n) = r(n), and the expansion of 2n takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).$$

• We usually have r(2n+1) = r(n), and the expansion of 2n+1 takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).$$

This is the case unless $|v^{(n)}|_1 = r(n)$.

• Thus, for any $F: \Sigma_2^* 1 \to \Omega$, the sequence $f: \mathbb{N} \to \Omega$ given by

$$f(n) = F(u_{r(n)}^{(n)})$$

• We can write the binary expansion of any $n \in \mathbb{N}$ as

$$(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},$$

where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \le r(n)$.

• We always have r(2n) = r(n), and the expansion of 2n takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).$$

• We usually have r(2n + 1) = r(n), and the expansion of 2n + 1 takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).$$

This is the case unless $|v^{(n)}|_1 = r(n)$.

• Thus, for any $F: \Sigma_2^* 1 \to \Omega$, the sequence $f: \mathbb{N} \to \Omega$ given by

$$f(n) = F(u_{r(n)}^{(n)})$$

• We can write the binary expansion of any $n \in \mathbb{N}$ as

$$(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},$$

where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \le r(n)$.

• We always have r(2n) = r(n), and the expansion of 2n takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).$$

• We usually have r(2n + 1) = r(n), and the expansion of 2n + 1 takes the form

$$(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).$$

This is the case unless $|v^{(n)}|_1 = r(n)$.

• Thus, for any $F: \Sigma_2^* 1 \to \Omega$, the sequence $f: \mathbb{N} \to \Omega$ given by

$$f(n) = F(u_{r(n)}^{(n)})$$

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence $f: \mathbb{N} \to \mathbb{C}$ is multiplicative if f(nm) = f(n)f(m) for each $n, m \in \mathbb{N}$ with gcd(n,m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence f: N→C is multiplicative if f(nm) = f(n)f(m) for each n, m ∈ N with gcd(n,m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence $f: \mathbb{N} \to \mathbb{C}$ is multiplicative if f(nm) = f(n)f(m) for each $n, m \in \mathbb{N}$ with gcd(n,m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence f: N→C is multiplicative if f(nm) = f(n)f(m) for each n, m ∈ N with gcd(n,m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence f: N→C is multiplicative if f(nm) = f(n)f(m) for each n, m ∈ N with gcd(n,m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

General questions: Fix the base $k \ge 2$.

- Given a sequence $f \colon \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F} , find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

• Given a class S of subsets of \mathbb{N} , find all $E \in S$ that are k-automatic.

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ -automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if deg p = 1.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \bullet \rfloor$.
- A sequence $f: \mathbb{N} \to \mathbb{C}$ is *multiplicative* if f(nm) = f(n)f(m) for each $n, m \in \mathbb{N}$ with gcd(n, m) = 1. A complete classification was obtained in by K.-Lemańczyk-Müllner.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- $\bullet\,$ Automatic sequences are fundamentally connected to the additive structure of $\mathbb N.$
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; { $n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r$ }; $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max \{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; { $n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r$ }; $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; { $n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r$ }; $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; { $n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r$ }; $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; { $n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r$ }; $\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2\mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- $\bullet\,$ Automatic sequences are fundamentally connected to the additive structure of $\mathbb N.$
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2\mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N} .
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N} .
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

• Dirichlet characters, and more generally periodic multiplicative sequences;

•
$$f(n) = \omega^{\nu_p(n)}$$
, where $\nu_p(n) = \max\{\nu : p^{\nu} \mid n\}$ and $\omega = \exp(2\pi i/r)$;

• eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$ $\mathbb{N} \setminus \{p^{\alpha} : \alpha \in \mathbb{N}\};$
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$f(n) = h(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}),$$
 (†)

where h(0) = 1 and g(pn) = 0 for all n. Additionally, g is multiplicative.

Theorem (K., Lemańczyk, Müllner 2020)

Fix $k \geq 2$ and let $f \colon \mathbb{N} \to \mathbb{C}$ be a non-zero multiplicative sequence.

- If k is a power of a prime p then f is k-automatic iff h and g given by (†) are eventually periodic. (In this case, g must be either periodic or eventually zero.)
- If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$f(n) = h(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}),$$
 (†)

where h(0) = 1 and g(pn) = 0 for all n. Additionally, g is multiplicative.

Theorem (K., Lemańczyk, Müllner 2020)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be a non-zero multiplicative sequence.

- If k is a power of a prime p then f is k-automatic iff h and g given by (†) are eventually periodic. (In this case, g must be either periodic or eventually zero.)
- If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi \colon \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi \colon \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.

• If
$$f(q) \neq 0$$
 and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:
 $f_{\phi(m)}(n) \simeq f(k^{i}n + m) = f(q)^{-1}f(k^{i}qn + qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$
 $\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$\begin{split} f_{\phi(m)}(n) &\simeq f(k^{i}n+m) = f(q)^{-1} f(k^{i}qn+qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \\ &\simeq f(q)^{-1} f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n). \end{split}$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$
- Apply classification of automatic multiplicative sequences to conclude that φ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi \colon \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi \colon \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^{\alpha}) = \chi(p^{\alpha})$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi \colon \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^{i}n+m) = f(q)^{-1}f(k^{i}qn+qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn)$$
$$\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \dots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

THANK YOU FOR YOUR ATTENTION!

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$E = E_0 \cup pE_1 \cup p^2 E_2 \cup \dots, \tag{\dagger}$$

the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)

Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \ge 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2 \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$E = E_0 \cup pE_1 \cup p^2 E_2 \cup \dots, \tag{(\dagger)}$$

the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)

Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \ge 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2 \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$E = E_0 \cup pE_1 \cup p^2 E_2 \cup \dots, \tag{\dagger}$$

the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)

Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \ge 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2 \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Definition

• For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: (mE)/m = E.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd(q, k) = 1 and each $c \in \mathbb{Z}$, if we put $q' := gcd(q, \Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $gcd(q, \Delta) = 1$, we have $d_{log}(E/q) = d_{log}(E)$.
- Combining the two points above: $d_{\log}(E/q \triangle E) = d_{\log}(E/q) d_{\log}(E) = 0.$

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

$$\begin{split} \operatorname{Inv}(E) &:= \left\{ q \in \mathbb{N} \, : \, E/q \simeq E \right\}, \\ \operatorname{Rev}(E) &:= \left\{ q \in \mathbb{N} \, : \, q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset \right\}. \end{split}$$

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \operatorname{Inv}(E)$ and $d_{\log}(F) > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic.
- We can construct a finite group $G_E := \operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

```
\begin{aligned} \operatorname{Inv}(E) &:= \left\{ q \in \mathbb{N} \, : \, E/q \simeq E \right\}, \\ \operatorname{Rev}(E) &:= \left\{ q \in \mathbb{N} \, : \, q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset \right\}. \end{aligned}
```

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \text{Inv}(E)$ and $d_{\log}(F) > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic.
- We can construct a finite group $G_E := \operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

```
\begin{aligned} \operatorname{Inv}(E) &:= \left\{ q \in \mathbb{N} \, : \, E/q \simeq E \right\}, \\ \operatorname{Rev}(E) &:= \left\{ q \in \mathbb{N} \, : \, q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset \right\}. \end{aligned}
```

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \text{Inv}(E)$ and $d_{\log}(F) > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic.
- We can construct a finite group $G_E := \operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- $\bullet~$ The set E is asymptotically periodic.

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example

Let E be 10-automatic set with $2 \in Inv(E)$. Then 1_E is asymptotically 5-automatic;

 $1_E(5^{\alpha}n+m) \simeq 1_E(10^{\alpha}n+2^{\alpha}m) \in \mathcal{N}_{10}(1_E(n))$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^{\alpha}$, and hence $\#(\mathcal{N}_5(1_E)/\simeq) \leq \#(\mathcal{N}_{10}(1_E))$.

Corollary

If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example

Let E be 10-automatic set with $2 \in Inv(E)$. Then 1_E is asymptotically 5-automatic;

 $1_E(5^{\alpha}n+m) \simeq 1_E(10^{\alpha}n+2^{\alpha}m) \in \mathcal{N}_{10}(1_E(n))$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^{\alpha}$, and hence $\#(\mathcal{N}_5(1_E)/\simeq) \leq \#(\mathcal{N}_{10}(1_E))$.

Corollary

If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example

Let E be 10-automatic set with $2 \in Inv(E)$. Then 1_E is asymptotically 5-automatic;

 $1_E(5^{\alpha}n+m) \simeq 1_E(10^{\alpha}n+2^{\alpha}m) \in \mathcal{N}_{10}(1_E(n))$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^{\alpha}$, and hence $\#(\mathcal{N}_5(1_E)/\simeq) \leq \#(\mathcal{N}_{10}(1_E))$.

Corollary

If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.