On asymptotically automatic sequences

Jakub Konieczny
Camille Jordan Institute
Claude Bernard University Lyon 1

Numeration Conference
 22 V 2023, Liége

The Thue-Morse(-Prouhet) sequence
The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
(a) Fixed point of a substitution: $0 \mapsto 01, \quad 1 \mapsto 10$.
(6) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then

$$
z+(1+z)^{2} T(z)+(1+z)^{3} T(z)^{2}=0
$$

The Thue-Morse(-Prouhet) sequence
The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ 1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
a Fired point of a substitution: $0>01,1 \longmapsto 10$.
(6) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then
$z+(1+z)^{2} T(z)+(1+z)^{3} T(z)^{2}=0$.

The Thue-Morse(-Prouhet) sequence

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ 1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
(a) Fixed point of a substitution: $0 \mapsto 01,1 \mapsto 10$.
(3) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then
\square

The Thue-Morse(-Prouhet) sequence

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ 1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
(4) Fixed point of a substitution: $0 \mapsto 01, \quad 1 \mapsto 10$.
(6) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then

The Thue-Morse(-Prouhet) sequence

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ 1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
(4) Fixed point of a substitution: $0 \mapsto 01, \quad 1 \mapsto 10$.
(3) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then
$z+(1+z)^{2} T(z)+(1+z)^{3} T(z)^{2}=0$.

The Thue-Morse(-Prouhet) sequence

The Thue-Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow\{0,1\}$,

$$
01101001100101101001011001101001 \ldots
$$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:
(1) Explicit formula: $t(n)= \begin{cases}0 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ 1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}$
(2) Finite automaton:

(3) Recurrence: $t(0)=0, \quad t(2 n)=t(n), \quad t(2 n+1)=1-t(n)$.
(4) Fixed point of a substitution: $0 \mapsto 01, \quad 1 \mapsto 10$.
(5) Algebraic formal power series: If $T(z)=\sum_{n=0}^{\infty} t(n) z^{n} \in \mathbb{F}_{2}[[z]]$ then

$$
z+(1+z)^{2} T(z)+(1+z)^{3} T(z)^{2}=0 .
$$

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0}; - a transition function $\delta: S \times \Sigma_{k} \rightarrow S$; - an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata
Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0}; - a transition function $\delta: S \times \Sigma_{k} \rightarrow S$; - an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$. Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
\longrightarrow no leading zeros
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n) k\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n;
- for $w \in \Sigma_{k}^{*},[w]_{k} \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Intuition: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the k-kernel of f is the set

$$
\mathcal{N}_{k}(f):=\left\{f_{\alpha, m}: \alpha, m \in \mathbb{N}, m<k^{\alpha}\right\}, \text { where } f_{\alpha, m}(n):=f\left(k^{\alpha} n+m\right) .
$$

Examples:

- Let t be the Thue-Morse sequence, $t(n)=s_{2}(n) \bmod 2$. Then

$$
\mathcal{N}_{2}(t)=\{t, 1-t\}
$$

- Let $r(n)$ be the Rudin-Shapiro sequence, $r(n)=(-1)^{\#}$ of 11 in $(n)_{2}$. Then $r(2 n)=r(n), r(4 n+1)=r(n), r(4 n+3)=-r(2 n+1)$. Hence,

$$
\mathcal{N}_{2}(r)=\left\{ \pm r, \pm r^{\prime}\right\} \text {, where } r^{\prime}(n)=r(2 n+1) .
$$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\# \mathcal{N}_{k}(f)<\infty$.

Idea: Let $\mathcal{A}=(S, \delta, \Omega, \tau)$ be a (reduced) k-automaton computing f, reading least significant digits first. There is a bijection $S \longleftrightarrow \mathcal{N}_{k}(f)$.

Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the k-kernel of f is the set

$$
\mathcal{N}_{k}(f):=\left\{f_{\alpha, m}: \alpha, m \in \mathbb{N}, m<k^{\alpha}\right\}, \text { where } f_{\alpha, m}(n):=f\left(k^{\alpha} n+m\right) .
$$

Examples:

- Let t be the Thue-Morse sequence, $t(n)=s_{2}(n) \bmod 2$. Then

$$
\mathcal{N}_{2}(t)=\{t, 1-t\} .
$$

- Let $r(n)$ be the Rudin-Shapiro sequence, $r(n)=(-1)^{\#}$ of 11 in $(n)_{2}$. Then $r(2 n)=r(n), r(4 n+1)=r(n), r(4 n+3)=-r(2 n+1)$. Hence,

$$
\mathcal{N}_{2}(r)=\left\{ \pm r, \pm r^{\prime}\right\}, \text { where } r^{\prime}(n)=r(2 n+1) .
$$

Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the k-kernel of f is the set

$$
\mathcal{N}_{k}(f):=\left\{f_{\alpha, m}: \alpha, m \in \mathbb{N}, m<k^{\alpha}\right\}, \text { where } f_{\alpha, m}(n):=f\left(k^{\alpha} n+m\right)
$$

Examples:

- Let t be the Thue-Morse sequence, $t(n)=s_{2}(n) \bmod 2$. Then

$$
\mathcal{N}_{2}(t)=\{t, 1-t\} .
$$

- Let $r(n)$ be the Rudin-Shapiro sequence, $r(n)=(-1)^{\#}$ of 11 in $(n)_{2}$. Then $r(2 n)=r(n), r(4 n+1)=r(n), r(4 n+3)=-r(2 n+1)$. Hence,

$$
\mathcal{N}_{2}(r)=\left\{ \pm r, \pm r^{\prime}\right\}, \text { where } r^{\prime}(n)=r(2 n+1)
$$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\# \mathcal{N}_{k}(f)<\infty$.

significant digits first. There is a bijection $S \longleftrightarrow \mathcal{N}_{k}(f)$.

Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the k-kernel of f is the set

$$
\mathcal{N}_{k}(f):=\left\{f_{\alpha, m}: \alpha, m \in \mathbb{N}, m<k^{\alpha}\right\}, \text { where } f_{\alpha, m}(n):=f\left(k^{\alpha} n+m\right)
$$

Examples:

- Let t be the Thue-Morse sequence, $t(n)=s_{2}(n) \bmod 2$. Then

$$
\mathcal{N}_{2}(t)=\{t, 1-t\} .
$$

- Let $r(n)$ be the Rudin-Shapiro sequence, $r(n)=(-1)^{\#}$ of 11 in $(n)_{2}$. Then $r(2 n)=r(n), r(4 n+1)=r(n), r(4 n+3)=-r(2 n+1)$. Hence,

$$
\mathcal{N}_{2}(r)=\left\{ \pm r, \pm r^{\prime}\right\}, \text { where } r^{\prime}(n)=r(2 n+1)
$$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\# \mathcal{N}_{k}(f)<\infty$.
Idea: Let $\mathcal{A}=(S, \delta, \Omega, \tau)$ be a (reduced) k-automaton computing f, reading least significant digits first. There is a bijection $S \longleftrightarrow \mathcal{N}_{k}(f)$.

Asymptotics

- Two sequences $f, g: \mathbb{N} \rightarrow \Omega$ are asymptotically equal, denoted by

$$
f(n) \simeq g(n)
$$

if they differ on a set with asymptotic density zero:

$$
\#\{n<N: f(n) \neq g(n)\} / N \rightarrow 0 \text { as } N \rightarrow \infty
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$
f(n+m) \simeq f(n)
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \rightarrow \Omega$ such that

$$
f(n) \simeq \tilde{f}(n)
$$

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n)=\lfloor\sqrt{n}\rfloor \bmod 2$.

Asymptotics

- Two sequences $f, g: \mathbb{N} \rightarrow \Omega$ are asymptotically equal, denoted by

$$
f(n) \simeq g(n)
$$

if they differ on a set with asymptotic density zero:

$$
\#\{n<N: f(n) \neq g(n)\} / N \rightarrow 0 \text { as } N \rightarrow \infty .
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$
f(n+m) \sim f(n)
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \rightarrow \Omega$ such that

$$
f(n) \simeq \tilde{f}(n) .
$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymntotically shift-invariant secmence is not necessarily asymntotically periodic, e.g. $f(n)=\lfloor\sqrt{n}\rfloor \bmod 2$.

Asymptotics

- Two sequences $f, g: \mathbb{N} \rightarrow \Omega$ are asymptotically equal, denoted by

$$
f(n) \simeq g(n)
$$

if they differ on a set with asymptotic density zero:

$$
\#\{n<N: f(n) \neq g(n)\} / N \rightarrow 0 \text { as } N \rightarrow \infty
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$
f(n+m) \simeq f(n)
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \rightarrow \Omega$ such that
- Each asymptotically periodic sequence is asymptotically shift invariant.
- In asymntotically shift-invariant sequence is not necescarily asymptotically periodic, e.g. $f(n)=\lfloor\sqrt{n}\rfloor \bmod 2$.

Asymptotics

- Two sequences $f, g: \mathbb{N} \rightarrow \Omega$ are asymptotically equal, denoted by

$$
f(n) \simeq g(n)
$$

if they differ on a set with asymptotic density zero:

$$
\#\{n<N: f(n) \neq g(n)\} / N \rightarrow 0 \text { as } N \rightarrow \infty
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$
f(n+m) \simeq f(n)
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \rightarrow \Omega$ such that

$$
f(n) \simeq \tilde{f}(n)
$$

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant secmence is not necescarily asymptotically periodic, e.g. $f(n)=\lfloor\sqrt{n}\rfloor \bmod 2$.

Asymptotics

- Two sequences $f, g: \mathbb{N} \rightarrow \Omega$ are asymptotically equal, denoted by

$$
f(n) \simeq g(n)
$$

if they differ on a set with asymptotic density zero:

$$
\#\{n<N: f(n) \neq g(n)\} / N \rightarrow 0 \text { as } N \rightarrow \infty
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically invariant under shift by $m \in \mathbb{N}$ (or asymptotically shift-invariant, if m does not matter) if

$$
f(n+m) \simeq f(n)
$$

- A sequence $f: \mathbb{N} \rightarrow \Omega$ is asymptotically periodic if there is a periodic sequence $\tilde{f}: \mathbb{N} \rightarrow \Omega$ such that

$$
f(n) \simeq \tilde{f}(n)
$$

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n)=\lfloor\sqrt{n}\rfloor \bmod 2$.

Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_{k}(f) / \simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ such that for each $f^{\prime} \in \mathcal{N}_{k}(f)$ there exists $0 \leq i<d$ such that $f^{\prime}(n) \simeq f_{i}(n)$.

Then g is asymptotically k-automatic.

Let $\lambda(n)$ denote the number of leading 1 s in the binary expansion of n and

[^0]
Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_{k}(f) / \simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ such that for each $f^{\prime} \in \mathcal{N}_{k}(f)$ there exists $0 \leq i<d$ such that $f^{\prime}(n) \simeq f_{i}(n)$.

Example

Let $f: \mathbb{N} \rightarrow \Omega$ be k-automatic and let $g: \mathbb{N} \rightarrow \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_{k}(f) / \simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ such that for each $f^{\prime} \in \mathcal{N}_{k}(f)$ there exists $0 \leq i<d$ such that $f^{\prime}(n) \simeq f_{i}(n)$.

Example

Let $f: \mathbb{N} \rightarrow \Omega$ be k-automatic and let $g: \mathbb{N} \rightarrow \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1 s in the binary expansion of n and

$$
f(n)=f([\underbrace{11 \ldots 1}_{\lambda(n)} 0 * * \cdots *]_{2})= \begin{cases}1 & \text { if } \lambda(n) \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

Then f is asymptotically 2 -automatic.

Motivation

Why study the class of asymptotically automatic sequences?

- "Because it's there." - George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Motivation

Why study the class of asymptotically automatic sequences?

- "Because it's there."
- George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Motivation

Why study the class of asymptotically automatic sequences?

- "Because it's there."
- George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Motivation

Why study the class of asymptotically automatic sequences?

- "Because it's there."
- George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Motivation

Why study the class of asymptotically automatic sequences?

- "Because it's there."
- George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham's theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they "follow only from" the finiteness of the kernel)

Basic properties

```
Lemma (Closure under Cartesian products)
Let f:NN}->\Omega,\mp@subsup{f}{}{\prime}:\mathbb{N}->\mp@subsup{\Omega}{}{\prime}\mathrm{ be asumptotically, k-artomatic. Then f }\times\mp@subsup{f}{}{\prime}:\mathbb{N}->\Omega\times\mp@subsup{\Omega}{}{\prime
is also asymptotically k-automatic.
```

Lemma (Closure under coding)
Let $f: \mathbb{N} \rightarrow \Omega$ be asymntotically k-automatic and let $\rho: \Omega \rightarrow \Omega^{\prime}$ be any map. Then $\rho \circ f: \mathbb{N} \rightarrow \Omega^{\prime}$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction $f^{\prime}(n)=f(a n+b)$ $(a, b \in \mathbb{N})$ of f to an arithmetic progression is asymptotically k-automatic.
- Conversely, if there exists $a>0$ such that $f^{\prime}(n)=(a n+b)$ is asymptotically k-automatic for each $0 \leq b<a$, then f is asymptotically k-automatic.

Basic properties

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \rightarrow \Omega, f^{\prime}: \mathbb{N} \rightarrow \Omega^{\prime}$ be asymptotically k-automatic. Then $f \times f^{\prime}: \mathbb{N} \rightarrow \Omega \times \Omega^{\prime}$ is also asymptotically k-automatic.

```
Let f:\mathbb{N}->\Omega}\mathrm{ be asymptotically k-automatic and let p: }\Omega->\mp@subsup{\Omega}{}{\prime}\mathrm{ be any map. Then
\rho\circf:\mathbb{N}->\mp@subsup{\Omega}{}{\prime}\mathrm{ is also asymptotically }k\mathrm{ -automatic.}
```

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.
\square
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction $f^{\prime}(n)=f(a n+b)$ $(a, b \in \mathbb{N})$ of f to an arithmetic progression is asymptotically k-automatic.
- Conversely, if there exists $a>0$ such that $f^{\prime}(n)=(a n+b)$ is asymptotically k-automatic for each $0 \leq b<a$, then f is asymptotically k-automatic.

Basic properties

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \rightarrow \Omega, f^{\prime}: \mathbb{N} \rightarrow \Omega^{\prime}$ be asymptotically k-automatic. Then $f \times f^{\prime}: \mathbb{N} \rightarrow \Omega \times \Omega^{\prime}$ is also asymptotically k-automatic.

Lemma (Closure under coding)
Let $f: \mathbb{N} \rightarrow \Omega$ be asymptotically k-automatic and let $\rho: \Omega \rightarrow \Omega^{\prime}$ be any map. Then $\rho \circ f: \mathbb{N} \rightarrow \Omega^{\prime}$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Basic properties

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \rightarrow \Omega, f^{\prime}: \mathbb{N} \rightarrow \Omega^{\prime}$ be asymptotically k-automatic. Then $f \times f^{\prime}: \mathbb{N} \rightarrow \Omega \times \Omega^{\prime}$ is also asymptotically k-automatic.

Lemma (Closure under coding)
Let $f: \mathbb{N} \rightarrow \Omega$ be asymptotically k-automatic and let $\rho: \Omega \rightarrow \Omega^{\prime}$ be any map. Then $\rho \circ f: \mathbb{N} \rightarrow \Omega^{\prime}$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Basic properties

Lemma (Closure under Cartesian products)

Let $f: \mathbb{N} \rightarrow \Omega, f^{\prime}: \mathbb{N} \rightarrow \Omega^{\prime}$ be asymptotically k-automatic. Then $f \times f^{\prime}: \mathbb{N} \rightarrow \Omega \times \Omega^{\prime}$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f: \mathbb{N} \rightarrow \Omega$ be asymptotically k-automatic and let $\rho: \Omega \rightarrow \Omega^{\prime}$ be any map. Then $\rho \circ f: \mathbb{N} \rightarrow \Omega^{\prime}$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction $f^{\prime}(n)=f(a n+b)$ $(a, b \in \mathbb{N})$ of f to an arithmetic progression is asymptotically k-automatic.
- Conversely, if there exists $a>0$ such that $f^{\prime}(n)=(a n+b)$ is asymptotically k-automatic for each $0 \leq b<a$, then f is asymptotically k-automatic.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.
\square

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_{i} be representatives of $\mathcal{N}_{k}(f) / \simeq$.
- There is a unique map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $(*)$ holds.
- It remains to check that ϕ is automatic. In fact, $\# \mathcal{N}_{k}(\phi) \leq d$.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.
(1) f is asymptotically k-automatic;
(2) there exists $d \in \mathbb{N}, f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that for each $u \in \Sigma_{k}^{*}$ with length $\alpha:=|u|$ we have

$$
\begin{equation*}
f\left(k^{\alpha} n+[u]_{k}\right)=f\left(\left[(n)_{k} u\right]_{k}\right) \simeq f_{\phi(u)}(n) \tag{*}
\end{equation*}
$$

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done
- Let f be asymptotically k-automatic, and let f_{i}
- There is a unique map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\# \mathcal{N}_{k}(\phi) \leq d$.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.
(1) f is asymptotically k-automatic;
(2) there exists $d \in \mathbb{N}, f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that for each $u \in \Sigma_{k}^{*}$ with length $\alpha:=|u|$ we have

$$
\begin{equation*}
f\left(k^{\alpha} n+[u]_{k}\right)=f\left(\left[(n)_{k} u\right]_{k}\right) \simeq f_{\phi(u)}(n) \tag{*}
\end{equation*}
$$

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.
(1) f is asymptotically k-automatic;
(2) there exists $d \in \mathbb{N}, f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that for each $u \in \Sigma_{k}^{*}$ with length $\alpha:=|u|$ we have

$$
\begin{equation*}
f\left(k^{\alpha} n+[u]_{k}\right)=f\left(\left[(n)_{k} u\right]_{k}\right) \simeq f_{\phi(u)}(n) \tag{*}
\end{equation*}
$$

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_{i} be representatives of $\mathcal{N}_{k}(f) / \simeq$.
- It remains to check that ϕ is automatic. In fact, $\# \mathcal{N}_{k}(\phi) \leq d$.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.
(1) f is asymptotically k-automatic;
(2) there exists $d \in \mathbb{N}, f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that for each $u \in \Sigma_{k}^{*}$ with length $\alpha:=|u|$ we have

$$
\begin{equation*}
f\left(k^{\alpha} n+[u]_{k}\right)=f\left(\left[(n)_{k} u\right]_{k}\right) \simeq f_{\phi(u)}(n) \tag{*}
\end{equation*}
$$

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_{i} be representatives of $\mathcal{N}_{k}(f) / \simeq$.
- There is a unique map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that ($*$) holds.

Automata

Recall that $\Sigma_{k}=\{0,1, \ldots, k-1\}$ and $\Sigma_{k}^{*}=$ words over Σ_{k}.

Definition

The k-kernel of a map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is the set of maps $\Sigma_{k}^{*} \rightarrow \Omega$ given by

$$
\mathcal{N}_{k}(\phi)=\left\{\phi_{v}: v \in \Sigma_{k}^{*}\right\}, \quad \text { where } \phi_{v}(u):=\phi(u v) \text { for } u, v \in \Sigma_{k}^{*}
$$

The map $\phi: \Sigma_{k}^{*} \rightarrow \Omega$ is k-automatic if $\# \mathcal{N}_{k}(\phi)<\infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.
(1) f is asymptotically k-automatic;
(2) there exists $d \in \mathbb{N}, f_{0}, f_{1}, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that for each $u \in \Sigma_{k}^{*}$ with length $\alpha:=|u|$ we have

$$
\begin{equation*}
f\left(k^{\alpha} n+[u]_{k}\right)=f\left(\left[(n)_{k} u\right]_{k}\right) \simeq f_{\phi(u)}(n) \tag{*}
\end{equation*}
$$

- If the second condition holds, then $\#\left(\mathcal{N}_{k}(f) / \simeq\right) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_{i} be representatives of $\mathcal{N}_{k}(f) / \simeq$.
- There is a unique map $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $(*)$ holds.
- It remains to check that ϕ is automatic. In fact, $\# \mathcal{N}_{k}(\phi) \leq d$.

Bases

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k=m^{a}, \ell=m^{b}(m, a, b \in \mathbb{N})$.

```
Fact
If k, l\geq2 are multiplicatively dependent, then k-automatic sequences are the same as
\ell-automatic sequences. The same holds for asymptotically automatic sequences.
```

Idea: For simplicity, say $\ell=k^{c}$ for $c \in \mathbb{N}$. Then Σ_{k}^{*} can (almost) be identified with
Σ_{ℓ}^{*} by grouping blocks of c symbols.
A sequence $f: \mathbb{N} \rightarrow \Omega$ is eventually periodic if there exist n_{0} and $m>0$, such that
$f(n+m)=f(n)$ for all $n \geq n_{0}$.
Let $f: \mathbb{N} \rightarrow \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all
bases $k \geq 2$

Basic question: Given an automatic sequence f, in which bases is it automatic?

Bases

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k=m^{a}, \ell=m^{b}(m, a, b \in \mathbb{N})$.

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell=k^{c}$ for $c \in \mathbb{N}$. Then Σ_{k}^{*} can (almost) be identified with Σ_{ℓ}^{*} by grouping blocks of c symbols.

Basic question: Given an automatic sequence f, in which bases is it automatic?

Bases

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k=m^{a}, \ell=m^{b}(m, a, b \in \mathbb{N})$.

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell=k^{c}$ for $c \in \mathbb{N}$. Then Σ_{k}^{*} can (almost) be identified with Σ_{ℓ}^{*} by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \rightarrow \Omega$ is eventually periodic if there exist n_{0} and $m>0$, such that $f(n+m)=f(n)$ for all $n \geq n_{0}$.

Fact

Let $f: \mathbb{N} \rightarrow \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Basic question: Given an automatic sequence f, in which bases is it automatic?

Bases

Two integers $k, \ell \geq 2$ are multiplicatively dependent if they are both powers of the same integer: $k=m^{a}, \ell=m^{b}(m, a, b \in \mathbb{N})$.

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell=k^{c}$ for $c \in \mathbb{N}$. Then Σ_{k}^{*} can (almost) be identified with Σ_{ℓ}^{*} by grouping blocks of c symbols.

A sequence $f: \mathbb{N} \rightarrow \Omega$ is eventually periodic if there exist n_{0} and $m>0$, such that $f(n+m)=f(n)$ for all $n \geq n_{0}$.

Fact

Let $f: \mathbb{N} \rightarrow \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Basic question: Given an automatic sequence f, in which bases is it automatic?

Cobham's theorem

Theorem (Cobham, 1969)

Let $k, \ell \geq 2$ be two bases and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. If f is k-automatic and ℓ-automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$
\emptyset, \quad\left\{k^{a}: a \geq 1\right\} \text { for some } k \geq 2, \quad \mathbb{N} .
$$

Intuition: A sequence cannot be automatic in two different bases
(except for trivial cases).

There is no 3-automaton which computes the Thue-Morse sequence.

Cobham's theorem

Theorem (Cobham, 1969)

Let $k, \ell \geq 2$ be two bases and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. If f is k-automatic and ℓ-automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$
\emptyset, \quad\left\{k^{a}: a \geq 1\right\} \text { for some } k \geq 2, \quad \mathbb{N} .
$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Cobham's theorem

Theorem (Cobham, 1969)

Let $k, \ell \geq 2$ be two bases and let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. If f is k-automatic and ℓ-automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$
\emptyset, \quad\left\{k^{a}: a \geq 1\right\} \text { for some } k \geq 2, \quad \mathbb{N} .
$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue-Morse sequence.

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewsi, TK. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular secuences [Bell 20077 .
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
e ete. ete.

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc.,

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc.,

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc. etc.

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc.,

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewsi, TK. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc.

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem
Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ..

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Generalisations of Cobham's theorem

Analogues of Cobham's theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k - and ℓ-automatic respectively, and which are "close enough". Cobham's theorem continues to hold mutatis mutandis when the assumption that $f=g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

$$
\alpha_{1}\left(p_{1}-1\right) \geq \alpha_{2}\left(p_{2}-1\right) \geq \cdots \geq \alpha_{r}\left(p_{r}-1\right)
$$

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $\ell_{k}(n!) \equiv 0 \bmod k / p_{1}^{\alpha_{1}}$
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem
Theorem (Byszewski, K. 2017)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$

- Nationale: t $p(n!)=\frac{n-s_{p}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $n_{k}(n!)=0$ mod k / p_{1}^{α}
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem
Theorem (Byszewski, K. 2017)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic
- More generally. let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=$

- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$

- Rationale: $\nu_{p}(n!)=$

- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{T}^{\alpha_{r}}$ be the prime factorisation of k, where

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$

- Rationale: $\nu_{p}(n!)=\frac{n-s_{n}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $\ell_{k}(n!) \equiv 0 \bmod k / p_{1}$
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

$$
\alpha_{1}\left(p_{1}-1\right) \geq \alpha_{2}\left(p_{2}-1\right) \geq \cdots \geq \alpha_{r}\left(p_{r}-1\right)
$$

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=\frac{n-s_{p}(n)}{n-1} \approx$

- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

$$
\alpha_{1}\left(p_{1}-1\right) \geq \alpha_{2}\left(p_{2}-1\right) \geq \cdots \geq \alpha_{r}\left(p_{r}-1\right)
$$

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $\ell_{k}(n!) \equiv 0 \bmod k / p_{1}^{\alpha_{1}}$.
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of n !)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

$$
\alpha_{1}\left(p_{1}-1\right) \geq \alpha_{2}\left(p_{2}-1\right) \geq \cdots \geq \alpha_{r}\left(p_{r}-1\right)
$$

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $\ell_{k}(n!) \equiv 0 \bmod k / p_{1}^{\alpha_{1}}$.
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.

Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of $n!$)

- Let $\ell_{k}(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!)=\ell_{10}(3628800)=8$.
- The sequences $\ell_{k}(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_{k}(n!)$ is k-automatic.
- More generally, let $k=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ be the prime factorisation of k, where

$$
\alpha_{1}\left(p_{1}-1\right) \geq \alpha_{2}\left(p_{2}-1\right) \geq \cdots \geq \alpha_{r}\left(p_{r}-1\right)
$$

The sequence $\ell_{k}(n!)$ is p_{1}-automatic as long as $\alpha_{1}\left(p_{1}-1\right) \neq \alpha_{2}\left(p_{2}-1\right)$.

- Rationale: $\nu_{p}(n!)=\frac{n-s_{p}(n)}{p-1} \approx \frac{n}{p-1}$, so we expect that $\ell_{k}(n!) \equiv 0 \bmod k / p_{1}^{\alpha_{1}}$.
- For $k=12$ we have $\alpha_{1}\left(p_{1}-1\right)=\alpha_{2}\left(p_{2}-1\right)=2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f: \mathbb{N} \rightarrow\{4,8\}$. Also, $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=3,6,9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham's theorem that $1_{y}\left(\ell_{12}(n!)\right)$ is not automatic for $y=4,8$.

Asymptotic versions of Cobham's theorem

Theorem (K. 2022)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Asymptotic versions of Cobham's theorem

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Asymptotic versions of Cobham's theorem

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Asymptotic Cobham's theorem \Longrightarrow Density Cobham's theorem.

Let $f: \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g: \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ-automatic. Hence, by asymptotic Cobham's theorem, f is asymptotically periodic.

Asymptotic versions of Cobham's theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Unfortunately(?), this is false.

Let us order all integers of the form $2^{\alpha} 3^{\beta}$ in increasing order

Let $H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}$ and define $f: \mathbb{N} \rightarrow\{-1,+1\}$ by

Asymptotic versions of Cobham's theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic.
Then f is asymptotically periodic.
Unfortunately(?), this is false.

Example

Let us order all integers of the form $2^{\alpha} 3^{\beta}$ in increasing order

$$
\mathcal{H}:=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}:=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} .
$$

Let $H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}$ and define $f: \mathbb{N} \rightarrow\{-1,+1\}$ by

$$
f(n):=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
$$

We will show that f is asymptotically 2 - and 3 -automatic, but not asymptotically periodic.

Example in bases 2 and 3
Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$
- Thus, the number of "bad" n 's in $\left[\frac{1}{2} 3^{\beta}, \frac{1}{2} 3^{\beta+1}\right)$ is $o\left(3^{\beta}\right)$. Take sum w.r.t. β.

Example in bases 2 and 3
Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$
- Thus, the number of "bad" n 's in $\left[\frac{1}{2} 3^{\beta}, \frac{1}{2} 3^{\beta+1}\right)$

Example in bases 2 and 3
Reminder about notation:

$$
\begin{aligned}
\mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$. - We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
\square
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$
- Thus, the number of "bad" n 's in $\left[\frac{1}{2} 3^{\beta}, \frac{1}{2} 3^{\beta+1}\right)$

Example in bases 2 and 3
Reminder about notation:

$$
\begin{aligned}
\mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in$
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
\mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right)$ cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)$

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right.$) cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$.

Example in bases 2 and 3

Reminder about notation:

$$
\begin{aligned}
& \mathcal{H}=\left\{H_{0}<H_{1}<H_{2}<\cdots\right\}=\left\{2^{\alpha} 3^{\beta}: \alpha, \beta \geq 0\right\}=\{1,2,3,4,6,8,9,12, \ldots\} . \\
& H_{i}=2^{\alpha_{i}} 3^{\beta_{i}}, \quad f(n)=(-1)^{\alpha_{i}+\beta_{i}} \text { for } n \in\left[H_{i}, H_{i+1}\right) \text { and } i \geq 0 .
\end{aligned}
$$

Fact: $H_{i+1} / H_{i} \rightarrow 1$ as $i \rightarrow \infty$. Proof: Kronecker equidistribution theorem.

Lemma

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

- We only discuss $f(2 n) \simeq-f(n)$. Consider any $n \in\left[H_{i}, H_{i+1}\right)$ with $f(2 n)=f(n)$.
- We have $2 n \in\left[2 H_{i}, 2 H_{i+1}\right)$, where $2 H_{i}=: H_{j} \in \mathcal{H}$ and $2 H_{i+1}=: H_{j^{\prime}} \in \mathcal{H}$.
- If $2 n \in\left[H_{j}, H_{j+1}\right)$ then $f(2 n)=(-1)^{\left(\alpha_{i}+1\right)+\beta_{i}}=-f(n)$, so $j^{\prime} \geq j+2$.
- Since $H_{i}<H_{j+1} / 2<H_{i+1}$ we have $2 \nmid H_{j+1}$. Thus, H_{j+1} is a power of 3 .
- Since $\left[H_{j}, H_{j^{\prime}}\right.$) cannot contain two powers of 3 , we have $j^{\prime}=j+2$.
- Summarising, we have $2 n \in\left[H_{j+1}, H_{j+2}\right)=\left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1+o(1))\right)$.
- Thus, the number of "bad" n 's in $\left[\frac{1}{2} 3^{\beta}, \frac{1}{2} 3^{\beta+1}\right)$ is $o\left(3^{\beta}\right)$. Take sum w.r.t. β.

Example in bases 2 and 3

Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n) .
$$

Corollary
 The sequence f is asymptotically 2 - and 3-automatic.

In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f}.
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n)=c= \pm 1$ is constant.
- Since $f(2 n) \simeq-f(n)$, also $\tilde{f}(2 n) \simeq-\tilde{f}(n)$, so $c=-c$, but this is impossible.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3
Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n) .
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

```
Lemma
The sequerce f is not asymptotically periodic.
- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n)\) for periodic \(\tilde{f}\).
- Since \(f(n+1) \simeq f(n)\), also \(\tilde{f}(n+1) \simeq \tilde{f}(n)\) and hence \(\tilde{f}(n)=c= \pm 1\) is constant.
- Since \(f(2 n) \simeq-f(n)\), also \(\tilde{f}(2 n) \simeq-\tilde{f}(n)\), so \(c=-c\), but this is impossible.
```

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3
Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n) .
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3
Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n) .
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f}.
- Since $f(n+1) \simeq f(n)$, also $f(n+1) \simeq f(n)$ and hence $f(n)=c= \pm 1$ is constant. - Since $f(2 n) \simeq-f(n)$, also $\tilde{f}(2 n) \simeq-\tilde{f}(n)$, so $c=-c$, but this is impossible.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3
Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f}.
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n)=c= \pm 1$ is constant.
- Since $f(2 n) \simeq-f(n)$, also $\tilde{f}(2 n) \simeq-\tilde{f}(n)$, so $c=-c$, but this is impossible.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3

Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n)
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f}.
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n)=c= \pm 1$ is constant.
- Since $f(2 n) \simeq-f(n)$, also $\tilde{f}(2 n) \simeq-\tilde{f}(n)$, so $c=-c$, but this is impossible.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Example in bases 2 and 3

Reminder:

$$
f(n+1) \simeq f(n) \quad f(2 n) \simeq-f(n) \quad f(3 n) \simeq-f(n) .
$$

Corollary

The sequence f is asymptotically 2- and 3-automatic.
In fact, $\#\left(\mathcal{N}_{2}(f) / \simeq\right) \leq 2$ and $\#\left(\mathcal{N}_{3}(f) / \simeq\right) \leq 2$.

Lemma

The sequence f is not asymptotically periodic.

- Suppose, for the sake of contradiction, that $f(n) \simeq \tilde{f}(n)$ for periodic \tilde{f}.
- Since $f(n+1) \simeq f(n)$, also $\tilde{f}(n+1) \simeq \tilde{f}(n)$ and hence $\tilde{f}(n)=c= \pm 1$ is constant.
- Since $f(2 n) \simeq-f(n)$, also $\tilde{f}(2 n) \simeq-\tilde{f}(n)$, so $c=-c$, but this is impossible.

Summary: A sequence that is asymptotically k - and ℓ-automatic for multiplicatively independent $k, \ell \geq 2$ does not need to be asymptotically periodic.

Bases of automaticity
For a sequence $f: \mathbb{N} \rightarrow \Omega$, put $\mathcal{B}_{\text {aut }}(f):=\{k \in \mathbb{N}: f$ is k-automatic $\}$.

```
Theorem (Cobham; alternative phrasing)
Let f:N}->\Omega\mathrm{ be a sequence. Then }\mp@subsup{\mathcal{B}}{\mathrm{ aut ( }}{(f)}\mathrm{ one of:
    - the empty set \emptyset (i.e., f is not automatic);
    - a geometric progression {\mp@subsup{k}{}{a}:a\geq1} for some }k\geq2\mathrm{ ;
    - all integers }\mathbb{N}\mathrm{ (i.e., f is eventually periodic).
```

In the same spirit, put $\mathcal{B}_{\text {asy }}(f):=\{k \in \mathbb{N}: f$ is asymptotically k-automatic $\}$
Theorem (asymptotic variant of Cobham; alternative phrasing)
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then one of the following holds:
- $\mathcal{B}_{\text {aut }}(f)=\emptyset$ (i.e., f is not automatic);
- $\mathcal{B}_{\text {asy }}(f)=\mathcal{B}_{\text {aut }}(f)=\left\{k^{a}: a \in \mathbb{N}\right\}$ for some $k \geq 2$;
- $\mathcal{B}_{\text {asy }}(f)=\mathcal{B}_{\text {aut }}(f)=\mathbb{N}$ (i.e., f is asymptotically periodic).

Bases of automaticity

For a sequence $f: \mathbb{N} \rightarrow \Omega$, put $\mathcal{B}_{\text {aut }}(f):=\{k \in \mathbb{N}: f$ is k-automatic $\}$.

Theorem (Cobham; alternative phrasing)
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then $\mathcal{B}_{\text {aut }}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\left\{k^{a}: a \geq 1\right\}$ for some $k \geq 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $\mathcal{B}_{\text {asy }}(f):=\{k \in \mathbb{N}: f$ is asymptotically k-automatic $\}$
\square

Bases of automaticity

For a sequence $f: \mathbb{N} \rightarrow \Omega$, put $\mathcal{B}_{\text {aut }}(f):=\{k \in \mathbb{N}: f$ is k-automatic $\}$.

Theorem (Cobham; alternative phrasing)

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then $\mathcal{B}_{\mathrm{aut}}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\left\{k^{a}: a \geq 1\right\}$ for some $k \geq 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $\mathcal{B}_{\text {asy }}(f):=\{k \in \mathbb{N}: f$ is asymptotically k-automatic $\}$.
Theorem (asymptotic variant of Cobham; alternative phrasing)
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then one of the following holds:

- $\mathcal{B}_{\text {aut }}(f)=\emptyset$ (i.e., f is not automatic);
- $\mathcal{B}_{\text {asy }}(f)=\mathcal{B}_{\text {aut }}(f)=\left\{k^{a}: a \in \mathbb{N}\right\}$ for some $k \geq 2$;
- $\mathcal{B}_{\text {asy }}(f)=\mathcal{B}_{\text {aut }}(f)=\mathbb{N}$ (i.e., f is asymptotically periodic).

Bases of automaticity

Lemma

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the set $\mathcal{B a s y}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ then $k \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ and $k / \ell \in \mathbb{N}$ then $k / \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k \in \mathcal{B}_{\text {asy }}(f), a \in \mathbb{Q}+$ and $k^{a} \in \mathbb{N}$ then $k^{a} \in \mathcal{B}_{\text {asy }}(f)$.

Corollary
Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. There exists a vector space $V<\oplus_{p \in \mathbb{P}} \mathbb{Q}$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

Conjecture: The converse is also true.

Bases of automaticity

Lemma

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the set $\mathcal{B}_{\text {asy }}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ then $k \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ and $k / \ell \in \mathbb{N}$ then $k / \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k \in \mathcal{B}_{\text {asy }}(f), a \in \mathbb{Q}_{+}$and $k^{a} \in \mathbb{N}$ then $k^{a} \in \mathcal{B}_{\text {asy }}(f)$.

Bases of automaticity

Lemma

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the set $\mathcal{B}_{\text {asy }}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ then $k \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ and $k / \ell \in \mathbb{N}$ then $k / \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k \in \mathcal{B}_{\text {asy }}(f), a \in \mathbb{Q}+$ and $k^{a} \in \mathbb{N}$ then $k^{a} \in \mathcal{B}_{\text {asy }}(f)$.

Corollary

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. There exists a vector space $V<\bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

Bases of automaticity

Lemma

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. Then the set $\mathcal{B}_{\text {asy }}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ then $k \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k, \ell \in \mathcal{B}_{\text {asy }}(f)$ and $k / \ell \in \mathbb{N}$ then $k / \ell \in \mathcal{B}_{\text {asy }}(f)$;
- if $k \in \mathcal{B}_{\text {asy }}(f), a \in \mathbb{Q}+$ and $k^{a} \in \mathbb{N}$ then $k^{a} \in \mathcal{B}_{\text {asy }}(f)$.

Corollary

Let $f: \mathbb{N} \rightarrow \Omega$ be a sequence. There exists a vector space $V<\bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

Conjecture: The converse is also true.

Open problems

Conjecture

Let $V<\bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f: \mathbb{N} \rightarrow \Omega$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

```
orame
Are the following situations possible?
- \(\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}\) (we know: \(\mathcal{B}_{\text {asy }}(f) \supseteq\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}\) is possible);
- \(\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b} 5^{c}: a, b, c \in \mathbb{N}\right\} ;\)
- \(\mathcal{B}_{\text {asy }}(f)=\mathbb{N}\), but \(f\) is not asymptotically periodic.
```


Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(p n) \simeq-f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \geq 2$.

Open problems

Conjecture

Let $V<\bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f: \mathbb{N} \rightarrow \Omega$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

Question

Are the following situations possible?

- $\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}$ (we know: $\mathcal{B}_{\text {asy }}(f) \supseteq\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}$ is possible);
- $\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b} 5^{c}: a, b, c \in \mathbb{N}\right\} ;$
- $\mathcal{B}_{\text {asy }}(f)=\mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(p n) \simeq-f(n)$ requires a new argument
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \geq 2$.

Open problems

Conjecture

Let $V<\bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f: \mathbb{N} \rightarrow \Omega$ such that

$$
\mathcal{B}_{\text {asy }}(f)=\left\{k \in \mathbb{N}_{\geq 2}:\left(\nu_{p}(f)\right)_{p \in \mathcal{P}} \in V\right\} .
$$

Question

Are the following situations possible?

- $\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}$ (we know: $\mathcal{B}_{\text {asy }}(f) \supseteq\left\{2^{a} 3^{b}: a, b \in \mathbb{N}\right\}$ is possible);
- $\mathcal{B}_{\text {asy }}(f)=\left\{2^{a} 3^{b} 5^{c}: a, b, c \in \mathbb{N}\right\}$;
- $\mathcal{B}_{\text {asy }}(f)=\mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(p n) \simeq-f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \geq 2$.

Proof of asymptotic Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathbb{N}_{k}(f) / \sim \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d} ;$
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $\left.f\left(\ell^{\rho} n+[v]\right]_{\ell}\right) \simeq f_{\psi(v)}(n) ;$
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \sim f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \sim f_{\psi((m)),}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem
Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \sim \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d} ;$
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e} ;$
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\rho} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \simeq f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \simeq f_{\psi\left((m)_{\ell}\right)}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem
Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \sim ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d}$;
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\beta} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \simeq f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \simeq f_{\psi\left((m)_{\ell}\right)}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem
Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \simeq ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d}$;
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \sim ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is l-automatic and $\left.f\left(\ell^{\rho} n+[v]\right]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
\left.f\left(k^{\alpha} n+m\right) \sim f_{\phi((m) k)}\right)(n) \quad f\left(\rho^{\beta} n+m\right) \sim f_{\nu(m)}(n) \quad \text { for each } m \in \mathbb{N}
$$

Proof of asymptotic Cobham's theorem
Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \simeq ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d}$;
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\beta} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{i}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \simeq f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \simeq f_{\psi\left((m)_{\ell}\right)}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \simeq ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d} ;$
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\beta} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \sim f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\rho^{\beta} n+m\right) \sim f_{\varphi(m))}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \simeq ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d}$;
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\beta} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \simeq f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \simeq f_{\psi\left((m)_{\ell}\right)}(n)
$$

Proof of asymptotic Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_{0}, f_{1}, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_{k}(f) / \simeq ; \vec{f}:=\left(f_{0}, f_{1}, \ldots, f_{d-1}\right): \mathbb{N} \rightarrow \Omega^{d}$;
- $g_{0}, g_{1}, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_{\ell}(f) / \simeq ; \vec{g}:=\left(g_{0}, g_{1}, \ldots, g_{e-1}\right): \mathbb{N} \rightarrow \Omega^{e}$;
- $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ is k-automatic and $f\left(k^{\alpha} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$;
- $\psi: \Sigma_{\ell}^{*} \rightarrow \Sigma_{e}$ is ℓ-automatic and $f\left(\ell^{\beta} n+[v]_{\ell}\right) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0 u)=\phi(u)$ for $u \in \Sigma_{k}^{*}$ and $\psi(0 v)=\psi(u)$ for $v \in \Sigma_{\ell}^{*}$; thus

$$
f\left(k^{\alpha} n+m\right) \simeq f_{\phi\left((m)_{k}\right)}(n) \quad f\left(\ell^{\beta} n+m\right) \simeq f_{\psi\left((m)_{\ell}\right)}(n) \quad \text { for each } m \in \mathbb{N} .
$$

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}, \vec{y} \in \Omega^{e}$ and $E:=\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}$. Suppose that $\bar{d}(E)>0$. Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Proof of Lemma:

- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=\int_{\left.\phi(m)_{k}\right)}\left(\ell^{\beta} n\right)=x_{\phi\left((m)_{k}\right)}$ for almost all $n \in E$.
- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=g_{\psi\left((m)_{\ell}\right)}\left(k^{\alpha} n\right)=y_{\psi\left((m)_{\ell}\right)}$ for almost all $n \in E$.
- Since $\bar{d}(E)>0$, there is at least one $n \in \mathbb{N}$ such that

$$
x_{\left.\phi(t m)_{k}\right)}=f\left(k^{\alpha} \rho^{\beta} n+m\right)-y_{\left.\phi(1 m)_{e}\right)}
$$

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}, \vec{y} \in \Omega^{e}$ and $E:=\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}$. Suppose that $\bar{d}(E)>0$. Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Proof of Lemma:

- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=f_{\phi\left((m)_{k}\right)}\left(\ell^{\beta} n\right)=x_{\phi\left((m)_{k}\right)}$ for almost all $n \in E$.
- Since $\bar{d}(E)>0$, there is at least one $n \in \mathbb{N}$ such that

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}, \vec{y} \in \Omega^{e}$ and $E:=\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}$. Suppose that $\bar{d}(E)>0$. Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Proof of Lemma:

- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=f_{\phi\left((m)_{k}\right)}\left(\ell^{\beta} n\right)=x_{\phi\left((m)_{k}\right)}$ for almost all $n \in E$.
- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=g_{\psi\left((m)_{\ell}\right)}\left(k^{\alpha} n\right)=y_{\psi\left((m)_{\ell}\right)}$ for almost all $n \in E$.
- Since $\bar{d}(E)>0$, there is at least one $n \in \mathbb{N}$ such that

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}, \vec{y} \in \Omega^{e}$ and $E:=\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}$. Suppose that $\bar{d}(E)>0$. Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Proof of Lemma:

- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=f_{\phi\left((m)_{k}\right)}\left(\ell^{\beta} n\right)=x_{\phi\left((m)_{k}\right)}$ for almost all $n \in E$.
- $f\left(k^{\alpha} \ell^{\beta} n+m\right)=g_{\psi\left((m)_{\ell}\right)}\left(k^{\alpha} n\right)=y_{\psi\left((m)_{\ell}\right)}$ for almost all $n \in E$.
- Since $\bar{d}(E)>0$, there is at least one $n \in \mathbb{N}$ such that

$$
x_{\phi\left((m)_{k}\right)}=f\left(k^{\alpha} \ell^{\beta} n+m\right)=y_{\psi\left((m)_{\ell}\right)}
$$

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary
 Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\rho(m)}(\mathrm{k})$ is ceventually periodic, provided that $(*)$ holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good"

- Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic.
- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{e}\right)}$ is k - and ℓ-automatic.
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell)}\right)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{k}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary

Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\phi\left((m)_{k}\right)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good".

Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic

- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{p}\right)}$ is k - and l-automatic
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{z_{2}}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary

Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\phi\left((m)_{k}\right)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic.
- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is k - and ℓ-automatic
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{k}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary

Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\phi\left((m)_{k}\right)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic.
- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is k - and ℓ-automatic.
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\rho)}\right.}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{z_{2}}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary

Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\phi\left((m)_{k}\right)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic.
- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is k - and ℓ-automatic.
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{k}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^{d}$ and $\vec{y} \in \Omega^{e}$. Suppose that

$$
\begin{equation*}
\bar{d}\left(\left\{n \in \mathbb{N}: \vec{f}\left(\ell^{\beta} n\right)=\vec{x}, \vec{g}\left(k^{\alpha} n\right)=\vec{y}\right\}\right)>0 . \tag{*}
\end{equation*}
$$

Then $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ for all $0 \leq m<\min \left(k^{\alpha}, \ell^{\beta}\right)$.

Corollary

Let $\vec{x} \in \Omega^{d}$. The sequence $x_{\phi\left((m)_{k}\right)}$ is eventually periodic, provided that $(*)$ holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^{e}$. Call such \vec{x} "good".

- Directly by definition, $x_{\phi\left((m)_{k}\right)}$ is k-automatic and $y_{\psi\left((m)_{\ell}\right)}$ is ℓ-automatic.
- By Lemma, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is k - and ℓ-automatic.
- By Cobham's theorem, $x_{\phi\left((m)_{k}\right)}=y_{\psi\left((m)_{\ell}\right)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi\left((m)_{k}\right)}$ is genuinely periodic.

Proof of asymptotic Cobham's theorem

Corollary

The sequence $x_{\phi\left((m)_{k}\right)}$ has period q for each "good" $\vec{x} \in \Omega^{d}$.

```
Lemma
Let n}\in\mathbb{N}\mathrm{ . Then
    f(n+q)=f(n),
```

provided that there exists a decamposition $n=k^{\alpha} n^{\prime}+m$ where $m<k^{\alpha}-q$ and
$\vec{x}:=\vec{f}\left(n^{\prime}\right)$ is "good"
Proof: $f\left(k^{\alpha} n^{\prime}+m+q\right)=x_{\phi\left((m+q)_{k}\right)}=x_{\phi\left((m)_{k}\right)}=f\left(k^{\alpha} n^{\prime}+m\right)$.
Lemma
For aormptotically almost all n, there exists a decomposition $n=k^{a} n^{\prime}+m$ where
$n^{\prime}, m, \alpha \in \mathbb{N}, m<k^{\alpha}-q, \vec{f}\left(n^{\prime}\right)$ is "good"

Proof idea: For each $\alpha<\log _{k} n$, there is a positive chance to find the decomposition.

The sequence $f(n)$ is asymptotically invariant under shift by $q, Q E D$

Proof of asymptotic Cobham's theorem

Corollary

The sequence $x_{\phi\left((m)_{k}\right)}$ has period q for each "good" $\vec{x} \in \Omega^{d}$.

Lemma

Let $n \in \mathbb{N}$. Then

$$
f(n+q)=f(n),
$$

provided that there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $m<k^{\alpha}-q$ and $\vec{x}:=\vec{f}\left(n^{\prime}\right)$ is "good".

Proof: $f\left(k^{\alpha} n^{\prime}+m+q\right)=x_{\phi\left((m+q)_{k}\right)}=x_{\phi\left((m)_{k}\right)}=f\left(k^{\alpha} n^{\prime}+m\right)$.

For asymptotically almost all n, there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $n^{\prime}, m, \alpha \in \mathbb{N}, m<k^{\alpha}-q, \vec{f}\left(n^{\prime}\right)$ is "good".

Proof idea: For each $\alpha<\log _{k} n$, there is a positive chance to find the decomposition.

Proof of asymptotic Cobham's theorem

Corollary

The sequence $x_{\phi\left((m)_{k}\right)}$ has period q for each "good" $\vec{x} \in \Omega^{d}$.

Lemma

Let $n \in \mathbb{N}$. Then

$$
f(n+q)=f(n)
$$

provided that there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $m<k^{\alpha}-q$ and $\vec{x}:=\vec{f}\left(n^{\prime}\right)$ is "good".

Proof: $f\left(k^{\alpha} n^{\prime}+m+q\right)=x_{\phi\left((m+q)_{k}\right)}=x_{\phi\left((m)_{k}\right)}=f\left(k^{\alpha} n^{\prime}+m\right)$.

Lemma

For asymptotically almost all n, there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $n^{\prime}, m, \alpha \in \mathbb{N}, m<k^{\alpha}-q, \vec{f}\left(n^{\prime}\right)$ is "good".

Proof idea: For each $\alpha<\log _{k} n$, there is a positive chance to find the decomposition.

Proof of asymptotic Cobham's theorem

Corollary

The sequence $x_{\phi\left((m)_{k}\right)}$ has period q for each "good" $\vec{x} \in \Omega^{d}$.

Lemma

Let $n \in \mathbb{N}$. Then

$$
f(n+q)=f(n)
$$

provided that there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $m<k^{\alpha}-q$ and $\vec{x}:=\vec{f}\left(n^{\prime}\right)$ is "good".

Proof: $f\left(k^{\alpha} n^{\prime}+m+q\right)=x_{\phi\left((m+q)_{k}\right)}=x_{\phi\left((m)_{k}\right)}=f\left(k^{\alpha} n^{\prime}+m\right)$.

Lemma

For asymptotically almost all n, there exists a decomposition $n=k^{\alpha} n^{\prime}+m$ where $n^{\prime}, m, \alpha \in \mathbb{N}, m<k^{\alpha}-q, \vec{f}\left(n^{\prime}\right)$ is "good".

Proof idea: For each $\alpha<\log _{k} n$, there is a positive chance to find the decomposition.

Corollary

The sequence $f(n)$ is asymptotically invariant under shift by $q, Q E D$.

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymntotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Lemma

Let $g: \mathbb{N T} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

$$
g\left(k^{\alpha} n_{0}+m\right)=0 \quad \text { for all } \alpha \in \mathbb{N}, 0 \leq m<k^{\alpha} .
$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

$$
g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n) \\ 0 & \text { if } f(n+1)=f(n)\end{cases}
$$

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simnlify, assume that $a=1$.

Lemma

Let $g: \mathbb{N T} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

$$
g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n) \\ 0 & \text { if } f(n+1)=f(n)\end{cases}
$$

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

$$
g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n) \\ 0 & \text { if } f(n+1)=f(n)\end{cases}
$$

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Let $g: \mathbb{N} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

$$
g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n) \\ 0 & \text { if } f(n+1)=f(n)\end{cases}
$$

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Let $g: \mathbb{N} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence $g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n), \\ 0 & \text { if } f(n+1)=f(n) .\end{cases}$

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Lemma

Let $g: \mathbb{N} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

$$
g\left(k^{\alpha} n_{0}+m\right)=0 \quad \text { for all } \alpha \in \mathbb{N}, 0 \leq m<k^{\alpha} .
$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

Proof of "mixed" Cobham's theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q=1$.

Lemma

Let $g: \mathbb{N} \rightarrow\{0,1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_{0} \in \mathbb{N}$ with

$$
g\left(k^{\alpha} n_{0}+m\right)=0 \quad \text { for all } \alpha \in \mathbb{N}, 0 \leq m<k^{\alpha}
$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_{k}^{*}$ such that $\delta\left(s_{0}, v\right)$ lies in a strongly connected component, and put $n_{0}=[v]_{k}$.

- Let n_{0} be the constant from the Lemma applied to the k-automatic sequence

$$
g(n)= \begin{cases}1 & \text { if } f(n+1) \neq f(n) \\ 0 & \text { if } f(n+1)=f(n)\end{cases}
$$

Proof of "mixed" Cobham's theorem
Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$.

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{2} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$. End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem
Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$.

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{2} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$. End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem
Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$.

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem
Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$.

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{2} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.
$\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{2} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

Find of proof: Cover \mathbb{R} / \mathbb{T} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.
- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{2} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta$ mod 1 .

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.
- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.
- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

Proof of "mixed" Cobham's theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right.$).

Fact: The sequence $f\left(k^{\alpha} n_{0}\right)$ is eventually periodic with respect to α.

- To simplify: assume that $f\left(k^{\alpha} n_{0}\right)=: c$ is constant.
- Thus $f(n)=c$ for $n \in\left[k^{\alpha} n_{0}, k^{\alpha}\left(n_{0}+1\right)\right)$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n)=c$ for all n such that

$$
\left\{\log _{k}(n)\right\} \in\left[\mu_{0}, \mu_{0}+\delta\right),
$$

where $\mu_{0}:=\left\{\log _{k}\left(n_{0}\right)\right\}$ and $\delta:=\log _{k}\left(1+1 / n_{0}\right)$.

- Let us say that an interval $I \subset \mathbb{R} / \mathbb{Z}$ is "nice" if $f(n)=c$ for almost all n with $\left\{\log _{k}(n)\right\} \in I$. Thus, $\left[\mu_{0}, \mu_{0}+\delta\right)$ is "nice".
Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f\left(\ell^{\beta} n\right) \simeq f\left(\ell^{\gamma} n\right)$.
- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log _{k}\left(\ell^{i} n\right)=\log _{k}(n)+i \theta$, where $\theta:=\log _{k}(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $\left[\mu_{i}, \mu_{i}+\delta\right)$ is "nice", where $\mu_{i}:=\mu_{0}-i \theta \bmod 1$.

End of proof: Cover \mathbb{R} / \mathbb{Z} with a finite union of of "nice" intervals.

Frequencies

Definition

Let $f: \mathbb{N} \rightarrow \Omega, \omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$
\begin{aligned}
& \operatorname{freq}(f ; \omega):=\lim _{N \rightarrow \infty} \frac{1}{N} \cdot \#\{n<N: f(n)=\omega\}, \\
& \operatorname{freq}_{\log }(f ; \omega):=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1}{\{\omega\}}(n) \\
& n+1
\end{aligned},
$$

Frequencies

Definition

Let $f: \mathbb{N} \rightarrow \Omega, \omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$
\begin{aligned}
\operatorname{freq}(f ; \omega) & :=\lim _{N \rightarrow \infty} \frac{1}{N} \cdot \#\{n<N: f(n)=\omega\} \\
\operatorname{freq}_{\log }(f ; \omega) & :=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n+1}
\end{aligned}
$$

Proposition (Frequencies of symbols in automatic sequences)

Let $f: \mathbb{N} \rightarrow \Omega$ be automatic and $\omega \in \Omega$. Then

- the logarithmic frequency freq $_{\text {log }}(f ; \omega)$ exists;
- if the frequency freq $(f ; \omega)$ exists then it is rational.

Frequencies

Definition

Let $f: \mathbb{N} \rightarrow \Omega, \omega \in \Omega$. The (asymptotic / logarithmic) frequency of ω if f is:

$$
\begin{aligned}
\operatorname{freq}(f ; \omega) & :=\lim _{N \rightarrow \infty} \frac{1}{N} \cdot \#\{n<N: f(n)=\omega\} \\
\operatorname{freq}_{\log }(f ; \omega) & :=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n+1}
\end{aligned}
$$

Proposition (Frequencies of symbols in automatic sequences)

Let $f: \mathbb{N} \rightarrow \Omega$ be automatic and $\omega \in \Omega$. Then

- the logarithmic frequency freq $_{\text {log }}(f ; \omega)$ exists;
- if the frequency $\operatorname{freq}(f ; \omega)$ exists then it is rational.

The asymptotic analogue is utterly false.

Frequencies

Proposition

There exists an asymptotically 2 -automatic sequence $f: \mathbb{N} \rightarrow\{0,1\}$ such that

$$
0=\liminf _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1}<\limsup _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1}=1 .
$$

Frequencies

Proposition

There exists an asymptotically 2 -automatic sequence $f: \mathbb{N} \rightarrow\{0,1\}$ such that

$$
0=\liminf _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1}<\limsup _{N \rightarrow \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1}=1 .
$$

Proposition

For each $\theta \in[0,1]$ there exists an asymptotically 2 -automatic sequence $f: \mathbb{N} \rightarrow\{0,1\}$ such that $\operatorname{freq}(f ; 1)=\theta$.

Frequencies - Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as

$$
(n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}
$$

where $r(n) \in \mathbb{N}$, each $u_{i}^{(n)}$ ends with $1,\left|u_{i}^{(n)}\right|_{1}=i$, and $\left|v^{(n)}\right|_{1} \leq r(n)$.

- We always have $r(2 n)=r(n)$, and the expansion of $2 n$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 0\right)
$$

- We usually have $r(2 n+1)=r(n)$, and the expansion of $2 n+1$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 1\right)
$$

This is the case unless $\left|v^{(n)}\right|_{1}=r(n)$.

- Thus, for any $F: \Sigma_{2}^{*} 1 \rightarrow \Omega$, the sequence $f: \mathbb{N} \rightarrow \Omega$ given by

$$
f(n)=F\left(u_{r(n)}^{(n)}\right)
$$

is asymptotically 2 -automatic.

Frequencies - Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as

$$
(n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}
$$

where $r(n) \in \mathbb{N}$, each $u_{i}^{(n)}$ ends with $1,\left|u_{i}^{(n)}\right|_{1}=i$, and $\left|v^{(n)}\right|_{1} \leq r(n)$.

- We always have $r(2 n)=r(n)$, and the expansion of $2 n$ takes the form

- We usually have $r(2 n+1)=r(n)$, and the expansion of $2 n+1$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 1\right)
$$

This is the case unless $\left|v^{(n)}\right|_{1}=r(n)$.

- Thus, for any $F: \Sigma_{2}^{*} 1 \rightarrow \Omega$, the sequence $f: \mathbb{N} \rightarrow \Omega$ given by

$$
f(n)=F\left(u_{r(n)}^{(n)}\right)
$$

is asymptotically 2 -automatic.

Frequencies - Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as

$$
(n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}
$$

where $r(n) \in \mathbb{N}$, each $u_{i}^{(n)}$ ends with $1,\left|u_{i}^{(n)}\right|_{1}=i$, and $\left|v^{(n)}\right|_{1} \leq r(n)$.

- We always have $r(2 n)=r(n)$, and the expansion of $2 n$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 0\right)
$$

- We usually have $r(2 n+1)=r(n)$, and the expansion of $2 n+1$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)_{1}}\right) .
$$

This is the case unless $\left|v^{(n)}\right|_{1}=r(n)$.

- Thus, for any $F: \Sigma_{2}^{*} 1 \rightarrow \Omega$, the sequence $f: \mathbb{N} \rightarrow \Omega$ given by

$$
f(n)=F\left(u_{r(n)}^{(n)}\right)
$$

Frequencies - Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as

$$
(n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}
$$

where $r(n) \in \mathbb{N}$, each $u_{i}^{(n)}$ ends with $1,\left|u_{i}^{(n)}\right|_{1}=i$, and $\left|v^{(n)}\right|_{1} \leq r(n)$.

- We always have $r(2 n)=r(n)$, and the expansion of $2 n$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 0\right)
$$

- We usually have $r(2 n+1)=r(n)$, and the expansion of $2 n+1$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 1\right)
$$

This is the case unless $\left|v^{(n)}\right|_{1}=r(n)$.
is asymptotically 2 -automatic.

Frequencies - Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as

$$
(n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}
$$

where $r(n) \in \mathbb{N}$, each $u_{i}^{(n)}$ ends with $1,\left|u_{i}^{(n)}\right|_{1}=i$, and $\left|v^{(n)}\right|_{1} \leq r(n)$.

- We always have $r(2 n)=r(n)$, and the expansion of $2 n$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 0\right)
$$

- We usually have $r(2 n+1)=r(n)$, and the expansion of $2 n+1$ takes the form

$$
(2 n)_{2}=u_{1}^{(n)} u_{2}^{(n)} \cdots u_{r(n)}^{(n)}\left(v^{(n)} 1\right)
$$

This is the case unless $\left|v^{(n)}\right|_{1}=r(n)$.

- Thus, for any $F: \Sigma_{2}^{*} 1 \rightarrow \Omega$, the sequence $f: \mathbb{N} \rightarrow \Omega$ given by

$$
f(n)=F\left(u_{r(n)}^{(n)}\right)
$$

is asymptotically 2 -automatic.

Classification problems
General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic. p is automatic if and only if $\operatorname{deg} p=1$.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor\alpha n+\beta\rfloor \bmod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e. expressions built up from polynomials using,$+ \times$ and $L \bullet$ $\operatorname{gcd}(n, m)=1$. A complete classification was obtained in by K.-Lemańczyk-Müllner.

Classification problems
General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic. p is automatic if and only if $\operatorname{deg} p=1$.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor\alpha n+\beta\rfloor \bmod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e expressions built up from polynomials using,$+ \times$ and $L \bullet$ $\operatorname{gcd}(n, m)=1$. A complete classification was obtained in by $K .-L e m a n c z y k-M u i l n e r$

Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n): n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\operatorname{deg} p=1$.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor\alpha n+\beta\rfloor \bmod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic.
Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e. expressions built up from polynomials using,$+ \times$ and $\lfloor\bullet$ $\operatorname{gcd}(n, m)=1$. A complete classification was obtained in by $K .-L e m a n c z y k-M u i l n e r$

Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n): n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\operatorname{deg} p=1$.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor\alpha n+\beta\rfloor \bmod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic.
Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using,$+ \times$ and $\lfloor\bullet\rfloor$.

Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_{E} is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- Cobham's theorem: If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.
- Primes and squares: It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n): n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\operatorname{deg} p=1$.
- Generalised polynomials: Allouche and Shallit showed that sequences of the form $(\lfloor\alpha n+\beta\rfloor \bmod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic.
Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using,$+ \times$ and $\lfloor\bullet\rfloor$.
- A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if $f(n m)=f(n) f(m)$ for each $n, m \in \mathbb{N}$ with $\operatorname{gcd}(n, m)=1$. A complete classification was obtained in by K.-Lemańczyk-Müllner.

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

```
- periodic semigroups;
- \(\left\{n \in \mathbb{N}: \nu_{p}(n) \equiv 0 \bmod r\right\} ;\)
- \(\mathbb{N} \backslash\left\{p^{\alpha}\right.\)
\(a \in \mathbb{N}\} ;\)
- \(m X \cup m^{2} \mathbb{N}\) where \(m \in \mathbb{N}\) and \(X \subset \mathbb{N}\) is any automatic set.
```

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

```
Fxample (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:
- Dirichlet characters, and more generally periodic multiplicative sequences;
- f(n)=\mp@subsup{\omega}{}{\nup(n)},\mathrm{ where }\mp@subsup{\nu}{p}{}(n)=\operatorname{max}{\nu:\mp@subsup{p}{}{\nu}|n}\mathrm{ and }\omega=\operatorname{exp}(2\pii/r);
- eventually zero multinlicative sequences.
```

```
Example (Automatic multiplicative semigroups)
The following families of multinlicative seminrouns are automatic:
- periodic semigroups; - {n\in\mathbb{N}:\mp@subsup{\nu}{p}{}(n)\equiv0\operatorname{mod}r};
- mX\cup\mp@subsup{m}{}{2}\mathbb{N}\mathrm{ where }m\in\mathbb{N}\mathrm{ and }X\subset\mathbb{N}\mathrm{ is any automatic set.}
```

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.
\square

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences; - $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;

```
- eventually zero multiplicative sequences.
```

\square

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- eventually zero multiplicative sequences.

The following families of multiplicative semigroups are automatic:

- periodic semigrouns;
- $\left\{n \in \mathbb{N}: \nu_{p}(n)=0 \bmod r\right\}$;
- $m X \cup m^{2} \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
\square

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- $m X \cup m^{2} \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- $m X \cup m^{2} \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups; $\quad \bullet\left\{n \in \mathbb{N}: \nu_{p}(n) \equiv 0 \bmod r\right\}$;

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- $\left\{n \in \mathbb{N}: \nu_{p}(n) \equiv 0 \bmod r\right\} ;$
- $\mathbb{N} \backslash\left\{p^{\alpha}: \alpha \in \mathbb{N}\right\} ;$

Addition vs. multiplication - heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any "non-trivial" automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n)=\omega^{\nu_{p}(n)}$, where $\nu_{p}(n)=\max \left\{\nu: p^{\nu} \mid n\right\}$ and $\omega=\exp (2 \pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups; \quad \{ $\left.n \in \mathbb{N}: \nu_{p}(n) \equiv 0 \bmod r\right\} ; \quad \bullet \mathbb{N} \backslash\left\{p^{\alpha}: \alpha \in \mathbb{N}\right\}$;
- $m X \cup m^{2} \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.

Classification of automatic multiplicative sequences

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$
f(n)=h\left(\nu_{p}(n)\right) \cdot g\left(n / p^{\nu_{p}(n)}\right),
$$

where $h(0)=1$ and $g(p n)=0$ for all n. Additionally, g is multiplicative.

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a non-zero multiplicative sequence
(1ft is a powen of a prime p then f is \boldsymbol{r}-automatic iffthand given by (t) are eventually periodic. (In this case, g must be either periodic or eventually zero.) - If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.

Classification of automatic multiplicative sequences

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$
f(n)=h\left(\nu_{p}(n)\right) \cdot g\left(n / p^{\nu_{p}(n)}\right)
$$

where $h(0)=1$ and $g(p n)=0$ for all n. Additionally, g is multiplicative.

Theorem (K., Lemańczyk, Müllner 2020)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a non-zero multiplicative sequence.

- If k is a power of a prime p then f is k-automatic iff h and g given by (\dagger) are eventually periodic. (In this case, g must be either periodic or eventually zero.)
- If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{\alpha}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n)
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:
$f_{\phi(m)}(n) \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n)$
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

invariant under a shift then $f \simeq 0$ or f is periodic

- We can use old tricks to assume that f is completely multiplicative
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$
- The last two items imply that if $\phi(q)=\phi\left(a^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(a r)=\phi\left(a^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
-
- The last two items imply that i
- Define a semigroup operation
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$
-
- The last two items imply that i
- Define a semigroup operation
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.

[^1] (on integers without small prime factors)

- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small
- The last two items imply that
- Define a semigroup operation
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klumman 2017 finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- Define a semigroup operation
- Annly clascification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klurman 2017 finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors)
- Periodicity of ϕ implies asymptotic periodicity of f
- Combining the last item with the fact from [Klumman 2017 finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
(on integers without small prime factors)
- Perindicity of ϕ implies acymntotic neriodicity of f
- Combining the last item with the fact from [Klumman 2017 finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Combining the last item with the fact from [Klurman 2017] finishes the argument

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.

Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi: \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0 , such that $f\left(p^{\alpha}\right)=\chi\left(p^{a}\right)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_{0}, f_{1}, \ldots, f_{d-1}$ and k-automatic $\phi: \Sigma_{k}^{*} \rightarrow \Sigma_{d}$ such that $f\left(k^{|u|} n+[u]_{k}\right) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_{k}^{*}$. To simplify, assume that $\phi(0 u)=\phi(u)$.
- If $f(q) \neq 0$ and $\phi(q m)=\phi\left(q m^{\prime}\right)$ then $\phi(m)=\phi\left(m^{\prime}\right)$:

$$
\begin{aligned}
f_{\phi(m)}(n) & \simeq f\left(k^{i} n+m\right)=f(q)^{-1} f\left(k^{i} q n+q m\right) \simeq f(q)^{-1} f_{\phi(q m)}(q n) \\
& \simeq f(q)^{-1} f_{\phi\left(q m^{\prime}\right)}(q n)=\cdots=f_{\phi\left(m^{\prime}\right)}(n) .
\end{aligned}
$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q)=\phi(1)$.
- The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right)$.
- Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.

Thank you for your attention!

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$
E=E_{0} \cup p E_{1} \cup p^{2} E_{2} \cup \ldots,
$$

the sequence $E_{0}, E_{1}, E_{2}, \ldots$ is eventually periodic, and $p \nmid n$ for all $n \in E_{i}$.

```
Theorem (Klurman, K. 2023+)
I et }k\geq2\mathrm{ and let }F\subset\mathbb{N}\mathrm{ be a k-antomatic semigroup. Assume further that E
contains an infinite pairwise coprime subset.
    - If k is a power of a prime p then for each i\geq0, the sets E E are asymptotically
        periodic.
    - If }k\mathrm{ has }\geq2\mathrm{ prime divisors then }E\mathrm{ is asymptotically periodic.
```

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E=m X \cup m^{2} \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$
E=E_{0} \cup p E_{1} \cup p^{2} E_{2} \cup \ldots,
$$

the sequence $E_{0}, E_{1}, E_{2}, \ldots$ is eventually periodic, and $p \nmid n$ for all $n \in E_{i}$.

Theorem (Klurman, K. 2023+)
Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \geq 0$, the sets E_{i} are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E=m X \cup m^{2} \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult

Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$
E=E_{0} \cup p E_{1} \cup p^{2} E_{2} \cup \ldots,
$$

the sequence $E_{0}, E_{1}, E_{2}, \ldots$ is eventually periodic, and $p \nmid n$ for all $n \in E_{i}$.

Theorem (Klurman, K. 2023+)

Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \geq 0$, the sets E_{i} are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E=m X \cup m^{2} \mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.
\square

Observation
Iet $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\operatorname{gcd}(q, k \Delta)=1$. Then $E / q \simeq E$.
Proof:

- Since E is a semigroup and $q \in E$, we have $E / q \supseteq E$.
- Since $\operatorname{gcd}(q, \Delta)=1$, we have $d_{\log }(E / q)=d_{\log }(E)$.
- Combining the two points above: $d_{\log }(E / q \triangle E)=d_{\log }(E / q)-d_{\log }(E)=0$.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\operatorname{gcd}(q, k)=1$ and each $c \in \mathbb{Z}$, if we put $q^{\prime}:=\operatorname{gcd}(q, \Delta)$ then

$$
d_{\log }((E-c) / q)=d_{\log }\left((E-c) / q^{\prime}\right) .
$$

Proof:

- Since $\operatorname{gcd}(q, \Delta)=1$, we have $d_{\log }(E / q)=d_{\log }(E)$.
- Combining the two points above: $d_{\log }(E / q \triangle E)=d_{\log }(E / q)-d_{\log }(E)=0$.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\operatorname{gcd}(q, k)=1$ and each $c \in \mathbb{Z}$, if we put $q^{\prime}:=\operatorname{gcd}(q, \Delta)$ then

$$
d_{\log }((E-c) / q)=d_{\log }\left((E-c) / q^{\prime}\right) .
$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\operatorname{gcd}(q, k \Delta)=1$. Then $E / q \simeq E$.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\operatorname{gcd}(q, k)=1$ and each $c \in \mathbb{Z}$, if we put $q^{\prime}:=\operatorname{gcd}(q, \Delta)$ then

$$
d_{\log }((E-c) / q)=d_{\log }\left((E-c) / q^{\prime}\right) .
$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\operatorname{gcd}(q, k \Delta)=1$. Then $E / q \simeq E$.
Proof:

- Since E is a semigroup and $q \in E$, we have $E / q \supseteq E$.
- Combining the two points above: $d_{\log }(E / q \triangle E)=d_{\log }(E / q)-d_{\log }(E)=0$.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\operatorname{gcd}(q, k)=1$ and each $c \in \mathbb{Z}$, if we put $q^{\prime}:=\operatorname{gcd}(q, \Delta)$ then

$$
d_{\log }((E-c) / q)=d_{\log }\left((E-c) / q^{\prime}\right) .
$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\operatorname{gcd}(q, k \Delta)=1$. Then $E / q \simeq E$.
Proof:

- Since E is a semigroup and $q \in E$, we have $E / q \supseteq E$.
- Since $\operatorname{gcd}(q, \Delta)=1$, we have $d_{\log }(E / q)=d_{\log }(E)$.
- Combining the two points above: $d_{\log }(E / q \triangle E)=d_{\log }(E / q)-d_{\log }(E)=0$.

Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E / m=\{n \in \mathbb{N}: m n \in E\}$. Note: $(m E) / m=E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\operatorname{gcd}(q, k)=1$ and each $c \in \mathbb{Z}$, if we put $q^{\prime}:=\operatorname{gcd}(q, \Delta)$ then

$$
d_{\log }((E-c) / q)=d_{\log }\left((E-c) / q^{\prime}\right) .
$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\operatorname{gcd}(q, k \Delta)=1$. Then $E / q \simeq E$.
Proof:

- Since E is a semigroup and $q \in E$, we have $E / q \supseteq E$.
- Since $\operatorname{gcd}(q, \Delta)=1$, we have $d_{\log }(E / q)=d_{\log }(E)$.
- Combining the two points above: $d_{\log }(E / q \triangle E)=d_{\log }(E / q)-d_{\log }(E)=0$.

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

$$
\begin{aligned}
\operatorname{Inv}(E) & :=\{q \in \mathbb{N}: E / q \simeq E\}, \\
\operatorname{Rev}(E) & :=\{q \in \mathbb{N}: q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset\} .
\end{aligned}
$$

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic
- We can construct a finite group $G_{E}:=\operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_{E}: \mathbb{N} \rightarrow G_{E} \cup\{0\}$ is k-automatic
- The map π_{E} is periodic (by classification of automatic multiplicative sequences)
- The set E is asymptotically periodic

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

$$
\begin{aligned}
\operatorname{Inv}(E) & :=\{q \in \mathbb{N}: E / q \simeq E\}, \\
\operatorname{Rev}(E) & :=\{q \in \mathbb{N}: q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset\} .
\end{aligned}
$$

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \operatorname{Inv}(E)$ and $d_{\log }(F)>0$.

- If k is a power of a prime p then $E=E_{0} \cup p E_{1} \cup p^{2} E_{2} \cup \ldots$, where E_{i} are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic
- We can construct a finite group $G_{E}:=\operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_{E}: \mathbb{N} \rightarrow G_{E} \cup\{0\}$ is k-automatic
- The map π_{E} is periodic (by classification of automatic multiplicative sequences)
- The set E is asymptotically periodic

Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

$$
\begin{aligned}
\operatorname{Inv}(E) & :=\{q \in \mathbb{N}: E / q \simeq E\} \\
\operatorname{Rev}(E) & :=\{q \in \mathbb{N}: q \mathbb{N} \cap \operatorname{Inv}(E) \neq \emptyset\}
\end{aligned}
$$

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \operatorname{Inv}(E)$ and $d_{\log }(F)>0$.

- If k is a power of a prime p then $E=E_{0} \cup p E_{1} \cup p^{2} E_{2} \cup \ldots$, where E_{i} are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\operatorname{Rev}(E)$ is periodic.
- We can construct a finite group $G_{E}:=\operatorname{Rev}(E) / \operatorname{Inv}(E)$.
- The quotient map $\pi_{E}: \mathbb{N} \rightarrow G_{E} \cup\{0\}$ is k-automatic.
- The map π_{E} is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \operatorname{Inv}(E)$?
- Can we use assumptions like $E / q \simeq E$ or $E / q \supseteq E$ when q is not coprime to k ?

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \operatorname{Inv}(E)$?
- Can we use assumptions like $E / q \simeq E$ or $E / q \supseteq E$ when q is not coprime to k ?

Example

Let E be 10 -automatic set with $2 \in \operatorname{Inv}(E)$. Then 1_{E} is asymptotically 5 -automatic;

$$
1_{E}\left(5^{\alpha} n+m\right) \simeq 1_{E}\left(10^{\alpha} n+2^{\alpha} m\right) \in \mathcal{N}_{10}\left(1_{E}(n)\right)
$$

for each $\alpha, m \in \mathbb{N}$ with $m<5^{\alpha}$, and hence $\#\left(\mathcal{N}_{5}\left(1_{E}\right) / \simeq\right) \leq \#\left(\mathcal{N}_{10}\left(1_{E}\right)\right)$.

Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \operatorname{Inv}(E)$?
- Can we use assumptions like $E / q \simeq E$ or $E / q \supseteq E$ when q is not coprime to k ?

Example

Let E be 10 -automatic set with $2 \in \operatorname{Inv}(E)$. Then 1_{E} is asymptotically 5 -automatic;

$$
1_{E}\left(5^{\alpha} n+m\right) \simeq 1_{E}\left(10^{\alpha} n+2^{\alpha} m\right) \in \mathcal{N}_{10}\left(1_{E}(n)\right)
$$

for each $\alpha, m \in \mathbb{N}$ with $m<5^{\alpha}$, and hence $\#\left(\mathcal{N}_{5}\left(1_{E}\right) / \simeq\right) \leq \#\left(\mathcal{N}_{10}\left(1_{E}\right)\right)$.

Corollary

If $E \subset \mathbb{N}$ is a 10 -automatic set with $2 \in \operatorname{Inv}(E)$ then E is asymptotically periodic.

[^0]: Then f is asymptotically 2-automatic.

[^1]: -
 - The last two items imply that if $\phi(q)=\phi\left(q^{\prime}\right)$ and $\phi(r)=\phi\left(r^{\prime}\right)$ then $\phi(q r)=\phi\left(q^{\prime} r^{\prime}\right.$
 - Define a semigroup operation \odot on (a subset of) Σ_{d} by $\phi(q) \odot \phi(r)=\phi(q r)$.
 - Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic

