On asymptotically automatic sequences

Jakub Konieczny

Camille Jordan Institute
Claude Bernard University Lyon 1

Numeration Conference
22 V 2023, Liége
The Thue–Morse sequence

The Thue–Morse sequence (discovered by Prouhet) \(t : \mathbb{N} \rightarrow \{0, 1\} \),

\[
01101001100101101001011001101001 \ldots
\]

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. Explicit formula: \(t(n) = \begin{cases} 0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\ 1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd)}. \end{cases} \)

2. Finite automaton:

![Finite automaton diagram]

3. Recurrence: \(t(0) = 0, \quad t(2n) = t(n), \quad t(2n + 1) = 1 - t(n). \)

4. Fixed point of a substitution: \(0 \mapsto 01, \quad 1 \mapsto 10. \)

5. Algebraic formal power series: If \(T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]] \) then

\[
z + (1 + z)^2 T(z) + (1 + z)^3 T(z)^2 = 0.
\]
The Thue–Morse (–Prouhet) sequence

The Thue–Morse sequence (discovered by Prouhet) $t : \mathbb{N} \rightarrow \{0, 1\}$,

$01101001100101101001011001101001 \ldots$

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. **Explicit formula:** $t(n) = \begin{cases}
0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\
1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd)}.
\end{cases}$

2. **Finite automaton:**

3. **Recurrence:** $t(0) = 0, \quad t(2n) = t(n), \quad t(2n + 1) = 1 - t(n)$.

4. **Fixed point of a substitution:** $0 \mapsto 01, \quad 1 \mapsto 10$.

5. **Algebraic formal power series:** If $T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]]$ then

 $$
 z + (1 + z)^2 T(z) + (1 + z)^3 T(z)^2 = 0.
 $$
The Thue–Morse (–Prouhet) sequence

The Thue–Morse sequence (discovered by Prouhet) \(t : \mathbb{N} \rightarrow \{0, 1\} \),

\[
01101001100101101001011001101001 \ldots
\]

is a \((the?)\) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. **Explicit formula:** \(t(n) = \begin{cases}
0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\
1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd)}.
\end{cases} \)

2. **Finite automaton:**

```
 0 ——— 1
 \__\|___ \__\|___
 \_\_\_\_\_\_ \_\_\_\_\_\_
 start ——— 0 ——— 1
```

3. **Recurrence:** \(t(0) = 0, \quad t(2n) = t(n), \quad t(2n + 1) = 1 - t(n). \)

4. **Fixed point of a substitution:** \(0 \mapsto 01, \quad 1 \mapsto 10. \)

5. **Algebraic formal power series:** If \(T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]] \) then

\[
z + (1 + z)^2 T(z) + (1 + z)^3 T(z)^2 = 0.
\]
The Thue–Morse sequence (discovered by Prouhet) \(t: \mathbb{N} \to \{0, 1\} \),

\[
0110100110010110100101101101001 \ldots
\]

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. **Explicit formula:** \(t(n) = \begin{cases}
0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\
1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd).}
\end{cases} \)

2. **Finite automaton:**

```
0 → 1
1 → 0
```

3. **Recurrence:** \(t(0) = 0, \quad t(2n) = t(n), \quad t(2n + 1) = 1 - t(n). \)

4. **Fixed point of a substitution:** \(0 \mapsto 01, \quad 1 \mapsto 10. \)

5. **Algebraic formal power series:** If \(T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]] \) then

\[
z + (1 + z)^2 T(z) + (1 + z)^3 T(z)^2 = 0.
\]
The Thue–Morse (Prouhet) sequence

The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \to \{0, 1\}$,

\[01101001100101101001011001101001\ldots\]

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. Explicit formula: $t(n) = \begin{cases} 0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\ 1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd)}. \end{cases}$

2. Finite automaton:

![Finite Automaton Diagram](image)

3. Recurrence: $t(0) = 0$, $t(2n) = t(n)$, $t(2n + 1) = 1 - t(n)$.

4. Fixed point of a substitution: $0 \mapsto 01$, $1 \mapsto 10$.

5. Algebraic formal power series: If $T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]]$ then

$$z + (1 + z)^2T(z) + (1 + z)^3T(z)^2 = 0.$$
The Thue–Morse sequence (discovered by Prouhet) $t: \mathbb{N} \rightarrow \{0, 1\},$

\[01101001100101101001011001101001\ldots\]

is a (the?) paradigmatic example of an automatic sequence. It can be described in several equivalent ways:

1. **Explicit formula:** $t(n) = \begin{cases} 0 & \text{if } n \text{ is evil (i.e., sum of binary digits is even)}, \\ 1 & \text{if } n \text{ is odious (i.e., sum of binary digits is odd)}. \end{cases}$

2. **Finite automaton:**

3. **Recurrence:** $t(0) = 0, \quad t(2n) = t(n), \quad t(2n + 1) = 1 - t(n).$

4. **Fixed point of a substitution:** $0 \mapsto 01, \quad 1 \mapsto 10.$

5. **Algebraic formal power series:** If $T(z) = \sum_{n=0}^{\infty} t(n)z^n \in \mathbb{F}_2[[z]]$ then

\[z + (1 + z)^2T(z) + (1 + z)^3T(z)^2 = 0.\]
Automatic sequences via finite automata

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta : S \times \Sigma_k \to S$;
- an output function $\tau : S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_2$.

Intuition: Automatic \iff Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let k denote the base in which we work. → e.g. $k = 10, k = 2$

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n; → no leading zeros
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \to S$;
- an output function $\tau: S \to \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\#$ of 11 in $(n)_2$.

Intuition: Automatic \iff Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let \(k \) denote the base in which we work.

- \(\Sigma_k = \{ 0, 1, \ldots, k - 1 \} \), the set of digits in base \(k \);
- \(\Sigma_k^* \) is the set of words over \(\Sigma_k \), monoid with concatenation;
- for \(n \in \mathbb{N} \), \((n)_k \in \Sigma_k^* \) is the base-\(k \) expansion of \(n \);
- for \(w \in \Sigma_k^* \), \([w]_k \in \mathbb{N} \) is the integer encoded by \(w \).

A finite \(k \)-automaton consists of:
- a finite set of states \(S \) with a distinguished initial state \(s_0 \);
- a transition function \(\delta : S \times \Sigma_k \rightarrow S \);
- an output function \(\tau : S \rightarrow \Omega \).

Computing the sequence:
- Extend \(\delta \) to a map \(S \times \Sigma_k^* \) with \(\delta(s, uv) = \delta(\delta(s, u), v) \) or \(\delta(\delta(s, v), u) \);
- The sequence computed by the automaton is given by \(a(n) = \tau(\delta(s_0, (n)_k)) \).
- The automaton above computes the Rudin–Shapiro sequence \((-1)^\# \text{ of } 11 \text{ in } (n)_2 \).

Intuition: Automatic \(\iff \) Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let k denote the base in which we work.

- $\Sigma_k = \{0, 1, \ldots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^{(11 \text{ # of } 11 \text{ in } (n)_2)}$.

Intuition: Automatic \iff Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let \(k \) denote the base in which we work.

\(\rightarrow \) e.g. \(k = 10, k = 2 \)

- \(\Sigma_k = \{0, 1, \ldots, k - 1\} \), the set of digits in base \(k \);
- \(\Sigma_k^* \) is the set of words over \(\Sigma_k \), monoid with concatenation;
- for \(n \in \mathbb{N} \), \((n)_k \in \Sigma_k^* \) is the base-\(k \) expansion of \(n \);
- for \(w \in \Sigma_k^* \), \([w]_k \in \mathbb{N}\) is the integer encoded by \(w \).

A finite \(k \)-automaton consists of:

- a finite set of states \(S \) with a distinguished initial state \(s_0 \);
- a transition function \(\delta: S \times \Sigma_k \to S \);
- an output function \(\tau: S \to \Omega \).

Computing the sequence:

- Extend \(\delta \) to a map \(S \times \Sigma_k^* \) with \(\delta(s, uv) = \delta(\delta(s, u), v) \) or \(\delta(\delta(s, v), u) \);
- The sequence computed by the automaton is given by \(a(n) = \tau(\delta(s_0, (n)_k)) \).
- The automaton above computes the Rudin–Shapiro sequence \((-1)\# \) of 11 in \((n)_2 \).

Intuition: Automatic \(\iff \) Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let \(k \) denote the base in which we work.

\(\Sigma_k = \{0, 1, \ldots, k - 1\} \), the set of digits in base \(k \);
\(\Sigma^*_k \) is the set of words over \(\Sigma_k \), monoid with concatenation;
for \(n \in \mathbb{N} \), \((n)_k \in \Sigma^*_k \) is the base-\(k \) expansion of \(n \);
for \(w \in \Sigma^*_k \), \([w]_k \in \mathbb{N} \) is the integer encoded by \(w \).

A finite \(k \)-automaton consists of:

- a finite set of states \(S \) with a distinguished initial state \(s_0 \);
- a transition function \(\delta: S \times \Sigma_k \to S \);
- an output function \(\tau: S \to \Omega \).

Computing the sequence:

- Extend \(\delta \) to a map \(S \times \Sigma^*_k \) with \(\delta(s, uv) = \delta(\delta(s, u), v) \) or \(\delta(\delta(s, v), u) \);
- The sequence computed by the automaton is given by \(a(n) = \tau(\delta(s_0, (n)_k)) \).
- The automaton above computes the Rudin–Shapiro sequence \((-1)^\# \) of \(11 \) in \((n)_2 \).

Intuition: Automatic \(\iff \) Computable by a finite device.
Automatic sequences via finite automata

Some notation: We let k denote the base in which we work.\[\rightarrow \text{e.g. } k = 10, k = 2\]

- $\Sigma_k = \{0, 1, \ldots, k - 1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k, monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n;\[\rightarrow \text{no leading zeros}\]
- for $w \in \Sigma_k^*$, $[w]_k \in \mathbb{N}$ is the integer encoded by w.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_0;
- a transition function $\delta: S \times \Sigma_k \rightarrow S$;
- an output function $\tau: S \rightarrow \Omega$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$ or $\delta(\delta(s, v), u)$;
- The sequence computed by the automaton is given by $a(n) = \tau(\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin–Shapiro sequence $(-1)^\# \text{ of } 11 \text{ in } (n)_2$.

Intuition: Automatic \iff Computable by a finite device.
Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f : \mathbb{N} \to \Omega$ be a sequence. Then the k-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, m < k^{\alpha}\},$$

where $f_{\alpha,m}(n) := f(k^{\alpha}n + m)$.

Examples:

- Let t be the Thue–Morse sequence, $t(n) = s_2(n) \mod 2$. Then
 $$\mathcal{N}_2(t) = \{t, 1 - t\}.$$

- Let $r(n)$ be the Rudin–Shapiro sequence, $r(n) = (-1)^\# \text{ of } 11 \text{ in } (n)_2$. Then
 $r(2n) = r(n)$, $r(4n + 1) = r(n)$, $r(4n + 3) = -r(2n + 1)$. Hence,
 $$\mathcal{N}_2(r) = \{\pm r, \pm r'\},$$
 where $r'(n) = r(2n + 1)$.

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Idea: Let $A = (S, \delta, \Omega, \tau)$ be a (reduced) k-automaton computing f, reading least significant digits first. There is a bijection $S \leftrightarrow \mathcal{N}_k(f)$.
Automatic sequences via kernels

Definition (Kernel)
Let \(k \geq 2 \) and let \(f : \mathbb{N} \to \Omega \) be a sequence. Then the \(k \)-kernel of \(f \) is the set
\[
\mathcal{N}_k(f) := \{ f_{\alpha,m} : \alpha, m \in \mathbb{N}, \ m < k^\alpha \}, \text{ where } f_{\alpha,m}(n) := f(k^\alpha n + m).
\]

Examples:
- Let \(t \) be the Thue–Morse sequence, \(t(n) = s_2(n) \mod 2 \). Then
 \[
 \mathcal{N}_2(t) = \{ t, 1-t \}.
 \]
- Let \(r(n) \) be the Rudin–Shapiro sequence, \(r(n) = (-1)^\# \text{ of } 11 \text{ in } (n)_2 \). Then
 \[
 r(2n) = r(n), \ r(4n + 1) = r(n), \ r(4n + 3) = -r(2n + 1). \text{ Hence},
 \]
 \[
 \mathcal{N}_2(r) = \{ \pm r, \pm r' \}, \text{ where } r'(n) = r(2n + 1).
 \]

Proposition
A sequence \(f \) is \(k \)-automatic if and only if it has finite \(k \)-kernel, \(\# \mathcal{N}_k(f) < \infty \).

Idea: Let \(\mathcal{A} = (S, \delta, \Omega, \tau) \) be a (reduced) \(k \)-automaton computing \(f \), reading least significant digits first. There is a bijection \(S \leftrightarrow \mathcal{N}_k(f) \).
Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f : \mathbb{N} \to \Omega$ be a sequence. Then the k-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, m < k^\alpha\},$$

where $f_{\alpha,m}(n) := f(k^\alpha n + m)$.

Examples:

- Let t be the Thue–Morse sequence, $t(n) = s_2(n) \mod 2$. Then
 $$\mathcal{N}_2(t) = \{t, 1-t\}.$$

- Let $r(n)$ be the Rudin–Shapiro sequence, $r(n) = (-1)^{\text{# of } 11 \text{ in } (n)_2}$. Then
 $r(2n) = r(n)$, $r(4n + 1) = r(n)$, $r(4n + 3) = -r(2n + 1)$. Hence,
 $$\mathcal{N}_2(r) = \{\pm r, \pm r'\}, \text{ where } r'(n) = r(2n + 1).$$

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Idea: Let $A = (S, \delta, \Omega, \tau)$ be a (reduced) k-automaton computing f, reading least significant digits first. There is a bijection $S \leftrightarrow \mathcal{N}_k(f)$.
Automatic sequences via kernels

Definition (Kernel)

Let $k \geq 2$ and let $f : \mathbb{N} \to \Omega$ be a sequence. Then the k-kernel of f is the set

$$\mathcal{N}_k(f) := \{f_{\alpha,m} : \alpha, m \in \mathbb{N}, m < k^\alpha\},$$

where $f_{\alpha,m}(n) := f(k^\alpha n + m)$.

Examples:

- Let t be the Thue–Morse sequence, $t(n) = s_2(n) \mod 2$. Then
 $$\mathcal{N}_2(t) = \{t, 1 - t\}.$$

- Let $r(n)$ be the Rudin–Shapiro sequence, $r(n) = (-1)^{\text{# of 11 in } (n)_2}$. Then $r(2n) = r(n)$, $r(4n + 1) = r(n)$, $r(4n + 3) = -r(2n + 1)$. Hence,
 $$\mathcal{N}_2(r) = \{\pm r, \pm r'\},$$
 where $r'(n) = r(2n + 1)$.

Proposition

A sequence f is k-automatic if and only if it has finite k-kernel, $\#\mathcal{N}_k(f) < \infty$.

Idea: Let $\mathcal{A} = (S, \delta, \Omega, \tau)$ be a (reduced) k-automaton computing f, reading least significant digits first. There is a bijection $S \leftrightarrow \mathcal{N}_k(f)$.
Asymptotics

- Two sequences \(f, g : \mathbb{N} \to \Omega \) are *asymptotically equal*, denoted by
 \[f(n) \simeq g(n), \]
 if they differ on a set with asymptotic density zero:
 \[\frac{\# \{ n < N : f(n) \neq g(n) \}}{N} \to 0 \text{ as } N \to \infty. \]

- A sequence \(f : \mathbb{N} \to \Omega \) is *asymptotically invariant under shift by \(m \in \mathbb{N} \) (or *asymptotically shift-invariant*, if \(m \) does not matter) if
 \[f(n + m) \simeq f(n). \]

- A sequence \(f : \mathbb{N} \to \Omega \) is *asymptotically periodic* if there is a periodic sequence \(\tilde{f} : \mathbb{N} \to \Omega \) such that
 \[f(n) \simeq \tilde{f}(n). \]

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. \(f(n) = \lfloor \sqrt{n} \rfloor \mod 2 \).
Asymptotics

- Two sequences \(f, g : \mathbb{N} \rightarrow \Omega \) are \textit{asymptotically equal}, denoted by
 \[f(n) \simeq g(n), \]
 if they differ on a set with asymptotic density zero:
 \[\# \{ n < N : f(n) \neq g(n) \} / N \rightarrow 0 \text{ as } N \rightarrow \infty. \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is \textit{asymptotically invariant under shift by} \(m \in \mathbb{N} \) (or \textit{asymptotically shift-invariant}, if \(m \) does not matter) if
 \[f(n + m) \simeq f(n). \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is \textit{asymptotically periodic} if there is a periodic sequence \(\tilde{f} : \mathbb{N} \rightarrow \Omega \) such that
 \[f(n) \simeq \tilde{f}(n). \]

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. \(f(n) = \lfloor \sqrt{n} \rfloor \mod 2. \)
Asymptotics

- Two sequences $f, g : \mathbb{N} \rightarrow \Omega$ are \textit{asymptotically equal}, denoted by
 \[f(n) \simeq g(n), \]
 if they differ on a set with asymptotic density zero:
 \[\frac{\# \{ n < N : f(n) \neq g(n) \}}{N} \rightarrow 0 \text{ as } N \rightarrow \infty. \]

- A sequence $f : \mathbb{N} \rightarrow \Omega$ is \textit{asymptotically invariant under shift by $m \in \mathbb{N}$} (or \textit{asymptotically shift-invariant}, if m does not matter) if
 \[f(n + m) \simeq f(n). \]

- A sequence $f : \mathbb{N} \rightarrow \Omega$ is \textit{asymptotically periodic} if there is a periodic sequence $\tilde{f} : \mathbb{N} \rightarrow \Omega$ such that
 \[f(n) \simeq \tilde{f}(n). \]

Example

- Each asymptotically periodic sequence is asymptotically shift-invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. $f(n) = [\sqrt{n}] \mod 2$.
Asymptotics

- Two sequences \(f, g : \mathbb{N} \rightarrow \Omega \) are *asymptotically equal*, denoted by
 \[
 f(n) \simeq g(n),
 \]
 if they differ on a set with asymptotic density zero:
 \[
 \# \{ n < N : f(n) \neq g(n) \} / N \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty.
 \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is *asymptotically invariant under shift* by \(m \in \mathbb{N} \) (or *asymptotically shift-invariant*, if \(m \) does not matter) if
 \[
 f(n + m) \simeq f(n).
 \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is *asymptotically periodic* if there is a periodic sequence \(\tilde{f} : \mathbb{N} \rightarrow \Omega \) such that
 \[
 f(n) \simeq \tilde{f}(n).
 \]

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. \(f(n) = \lfloor \sqrt{n} \rfloor \mod 2 \).
Asymptotics

- Two sequences \(f, g : \mathbb{N} \rightarrow \Omega \) are *asymptotically equal*, denoted by
 \[
 f(n) \simeq g(n),
 \]
 if they differ on a set with asymptotic density zero:
 \[
 \# \{ n < N : f(n) \neq g(n) \} / N \rightarrow 0 \text{ as } N \rightarrow \infty.
 \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is *asymptotically invariant under shift by \(m \in \mathbb{N} \) (or *asymptotically shift-invariant*, if \(m \) does not matter) if
 \[
 f(n + m) \simeq f(n).
 \]

- A sequence \(f : \mathbb{N} \rightarrow \Omega \) is *asymptotically periodic* if there is a periodic sequence \(\tilde{f} : \mathbb{N} \rightarrow \Omega \) such that
 \[
 f(n) \simeq \tilde{f}(n).
 \]

Example

- Each asymptotically periodic sequence is asymptotically shift invariant.
- An asymptotically shift-invariant sequence is not necessarily asymptotically periodic, e.g. \(f(n) = \lfloor \sqrt{n} \rfloor \mod 2 \).
Asymptotically automatic sequences

Definition
Let $k \geq 2$ be a base and let $f : \mathbb{N} \rightarrow \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_k(f) / \simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1} : \mathbb{N} \rightarrow \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example
Let $f : \mathbb{N} \rightarrow \Omega$ be k-automatic and let $g : \mathbb{N} \rightarrow \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example
Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

$$f(n) = f\left([\underbrace{11\ldots10}_{\lambda(n)} * * \cdots *]_2\right) = \begin{cases} 1 & \text{if } \lambda(n) \text{ is prime}, \\ 0 & \text{otherwise}. \end{cases}$$

Then f is asymptotically 2-automatic.
Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f : \mathbb{N} \to \Omega$ be a sequence. Then f is *asymptotically k-automatic* if and only if $\mathcal{N}_k(f)/\simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1} : \mathbb{N} \to \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example

Let $f : \mathbb{N} \to \Omega$ be k-automatic and let $g : \mathbb{N} \to \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

\[
 f(n) = f(\underbrace{[11\ldots10\ast\ast\cdots\ast]}_{\lambda(n)}) = \begin{cases}
 1 & \text{if } \lambda(n) \text{ is prime,} \\
 0 & \text{otherwise.}
\end{cases}
\]

Then f is asymptotically 2-automatic.
Asymptotically automatic sequences

Definition

Let $k \geq 2$ be a base and let $f : \mathbb{N} \to \Omega$ be a sequence. Then f is asymptotically k-automatic if and only if $\mathcal{N}_k(f)/\simeq$ is finite. In other words, f is asymptotically k-automatic if there exist sequences $f_0, f_1, \ldots, f_{d-1} : \mathbb{N} \to \Omega$ such that for each $f' \in \mathcal{N}_k(f)$ there exists $0 \leq i < d$ such that $f'(n) \simeq f_i(n)$.

Example

Let $f : \mathbb{N} \to \Omega$ be k-automatic and let $g : \mathbb{N} \to \Omega$ be a sequence with $f(n) \simeq g(n)$. Then g is asymptotically k-automatic.

Example

Let $\lambda(n)$ denote the number of leading 1s in the binary expansion of n and

$$f(n) = f\left(\left[\underbrace{11\ldots1}_{\lambda(n)} 0 * * \cdots *\right]_2\right) = \begin{cases} 1 & \text{if } \lambda(n) \text{ is prime,} \\ 0 & \text{otherwise.} \end{cases}$$

Then f is asymptotically 2-automatic.
Motivation

Why study the class of asymptotically automatic sequences?

- “Because it’s there.” — George Mallory

- Because it yields density versions of theorems on automatic sequences.
 (e.g. density version of Cobham’s theorem)

- Because it sometimes comes up in applications.
 (e.g. upcoming work with O. Klurman on classification of automatic semigroups)

- To better understand relations between properties of automatic sequences.
 (e.g. do they “follow only from” the finiteness of the kernel)
Motivation

Why study the class of asymptotically automatic sequences?

- “Because it’s there.” — George Mallory

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham’s theorem)

- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)

- To better understand relations between properties of automatic sequences. (e.g. do they “follow only from” the finiteness of the kernel)
Motivation

Why study the class of asymptotically automatic sequences?

- “Because it’s there.” — George Mallory

- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham’s theorem)

- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)

- To better understand relations between properties of automatic sequences. (e.g. do they “follow only from” the finiteness of the kernel)
Motivation

Why study the class of asymptotically automatic sequences?

- “Because it’s there.”
 — George Mallory

- Because it yields density versions of theorems on automatic sequences.
 (e.g. density version of Cobham’s theorem)

- Because it sometimes comes up in applications.
 (e.g. upcoming work with O. Klurman on classification of automatic semigroups)

- To better understand relations between properties of automatic sequences.
 (e.g. do they “follow only from” the finiteness of the kernel)
Motivation

Why study the class of asymptotically automatic sequences?

- “Because it’s there.” — George Mallory
- Because it yields density versions of theorems on automatic sequences. (e.g. density version of Cobham’s theorem)
- Because it sometimes comes up in applications. (e.g. upcoming work with O. Klurman on classification of automatic semigroups)
- To better understand relations between properties of automatic sequences. (e.g. do they “follow only from” the finiteness of the kernel)
Basic properties

Lemma (Closure under Cartesian products)

Let \(f : \mathbb{N} \to \Omega, f' : \mathbb{N} \to \Omega' \) be asymptotically \(k \)-automatic. Then \(f \times f' : \mathbb{N} \to \Omega \times \Omega' \) is also asymptotically \(k \)-automatic.

Lemma (Closure under coding)

Let \(f : \mathbb{N} \to \Omega \) be asymptotically \(k \)-automatic and let \(\rho : \Omega \to \Omega' \) be any map. Then \(\rho \circ f : \mathbb{N} \to \Omega' \) is also asymptotically \(k \)-automatic.

Corollary: Complex-valued asymptotically \(k \)-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let \(f : \mathbb{N} \to \Omega \) be a sequence.

- If \(f \) is asymptotically \(k \)-automatic then each restriction \(f''(n) = f(an + b) \) \((a, b \in \mathbb{N})\) of \(f \) to an arithmetic progression is asymptotically \(k \)-automatic.
- Conversely, if there exists \(a > 0 \) such that \(f''(n) = (an + b) \) is asymptotically \(k \)-automatic for each \(0 \leq b < a \), then \(f \) is asymptotically \(k \)-automatic.
Basic properties

Lemma (Closure under Cartesian products)

Let \(f : \mathbb{N} \to \Omega, \ f' : \mathbb{N} \to \Omega' \) be asymptotically \(k \)-automatic. Then \(f \times f' : \mathbb{N} \to \Omega \times \Omega' \) is also asymptotically \(k \)-automatic.

Lemma (Closure under coding)

Let \(f : \mathbb{N} \to \Omega \) be asymptotically \(k \)-automatic and let \(\rho : \Omega \to \Omega' \) be any map. Then \(\rho \circ f : \mathbb{N} \to \Omega' \) is also asymptotically \(k \)-automatic.

Corollary: Complex-valued asymptotically \(k \)-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let \(f : \mathbb{N} \to \Omega \) be a sequence.

- If \(f \) is asymptotically \(k \)-automatic then each restriction \(f'(n) = f(an + b) \) \((a, b \in \mathbb{N})\) of \(f \) to an arithmetic progression is asymptotically \(k \)-automatic.
- Conversely, if there exists \(a > 0 \) such that \(f'(n) = (an + b) \) is asymptotically \(k \)-automatic for each \(0 \leq b < a \), then \(f \) is asymptotically \(k \)-automatic.
Basic properties

Lemma (Closure under Cartesian products)

Let $f : \mathbb{N} \to \Omega$, $f' : \mathbb{N} \to \Omega'$ be asymptotically k-automatic. Then $f \times f' : \mathbb{N} \to \Omega \times \Omega'$ is also asymptotically k-automatic.

Lemma (Closure under coding)

Let $f : \mathbb{N} \to \Omega$ be asymptotically k-automatic and let $\rho : \Omega \to \Omega'$ be any map. Then $\rho \circ f : \mathbb{N} \to \Omega'$ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let $f : \mathbb{N} \to \Omega$ be a sequence.

- If f is asymptotically k-automatic then each restriction $f'(n) = f(an + b)$ ($a, b \in \mathbb{N}$) of f to an arithmetic progression is asymptotically k-automatic.

- Conversely, if there exists $a > 0$ such that $f'(n) = (an + b)$ is asymptotically k-automatic for each $0 \leq b < a$, then f is asymptotically k-automatic.
Basic properties

Lemma (Closure under Cartesian products)

Let \(f : \mathbb{N} \to \Omega, f' : \mathbb{N} \to \Omega' \) be asymptotically \(k \)-automatic. Then \(f \times f' : \mathbb{N} \to \Omega \times \Omega' \) is also asymptotically \(k \)-automatic.

Lemma (Closure under coding)

Let \(f : \mathbb{N} \to \Omega \) be asymptotically \(k \)-automatic and let \(\rho : \Omega \to \Omega' \) be any map. Then \(\rho \circ f : \mathbb{N} \to \Omega' \) is also asymptotically \(k \)-automatic.

Corollary: Complex-valued asymptotically \(k \)-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let \(f : \mathbb{N} \to \Omega \) be a sequence.

- If \(f \) is asymptotically \(k \)-automatic then each restriction \(f'(n) = f(an + b) \) (\(a, b \in \mathbb{N} \)) of \(f \) to an arithmetic progression is asymptotically \(k \)-automatic.
- Conversely, if there exists \(a > 0 \) such that \(f'(n) = (an + b) \) is asymptotically \(k \)-automatic for each \(0 \leq b < a \), then \(f \) is asymptotically \(k \)-automatic.
Basic properties

Lemma (Closure under Cartesian products)

Let \(f : \mathbb{N} \to \Omega, \ f' : \mathbb{N} \to \Omega' \) be asymptotically \(k \)-automatic. Then \(f \times f' : \mathbb{N} \to \Omega \times \Omega' \) is also asymptotically \(k \)-automatic.

Lemma (Closure under coding)

Let \(f : \mathbb{N} \to \Omega \) be asymptotically \(k \)-automatic and let \(\rho : \Omega \to \Omega' \) be any map. Then \(\rho \circ f : \mathbb{N} \to \Omega' \) is also asymptotically \(k \)-automatic.

Corollary: Complex-valued asymptotically \(k \)-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let \(f : \mathbb{N} \to \Omega \) be a sequence.

- If \(f \) is asymptotically \(k \)-automatic then each restriction \(f'(n) = f(an + b) \) \((a, b \in \mathbb{N})\) of \(f \) to an arithmetic progression is asymptotically \(k \)-automatic.
- Conversely, if there exists \(a > 0 \) such that \(f'(n) = (an + b) \) is asymptotically \(k \)-automatic for each \(0 \leq b < a \), then \(f \) is asymptotically \(k \)-automatic.
Automata

Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma_k^* = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma_k^* \rightarrow \Omega$ is the set of maps $\Sigma_k^* \rightarrow \Omega$ given by

$$\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^* \}$$

where $\phi_v(u) := \phi(uv)$ for $u, v \in \Sigma_k^*$.

The map $\phi: \Sigma_k^* \rightarrow \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \rightarrow \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;
2. there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \rightarrow \Omega$ and a k-automatic map $\phi: \Sigma_k^* \rightarrow \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f(k^\alpha n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n).$$

(*)

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi: \Sigma_k^* \rightarrow \Sigma_d$ such that (*) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.
Automata

Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma_k^* = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

$$\mathcal{N}_k(\phi) = \{ \phi_v : v \in \Sigma_k^* \},$$

where $\phi_v(u) := \phi(uv)$ for $u, v \in \Sigma_k^*$.

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \to \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;
2. there exists $d \in \mathbb{N}, f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ and a k-automatic map $\phi: \Sigma_k^* \to \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f (k^{\alpha} n + [u]_k) = f ([n]_k u)_k \sim f_{\phi(u)}(n).$$

If the second condition holds, then $\#(\mathcal{N}_k(f) \sim) \leq d$, so we are done.

Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f) \sim$.

There is a unique map $\phi: \Sigma_k^* \to \Sigma_d$ such that (\ast) holds.

It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.
Automata

Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma^*_k = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma^*_k \to \Omega$ is the set of maps $\Sigma^*_k \to \Omega$ given by

$$N_k(\phi) = \{\phi_v : v \in \Sigma^*_k\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma^*_k.$$

The map $\phi: \Sigma^*_k \to \Omega$ is k-automatic if $\#N_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \to \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;
2. there exists $d \in \mathbb{N}, f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ and a k-automatic map $\phi: \Sigma^*_k \to \Sigma_d$ such that for each $u \in \Sigma^*_k$ with length $\alpha := |u|$ we have

$$f(k^\alpha n + [u]_k) = f([(n)_k u]_k) \sim f_{\phi(u)}(n).$$

If the second condition holds, then $\#(N_k(f)/\sim) \leq d$, so we are done.

- Let f be asymptotically k-automatic, and let f_i be representatives of $N_k(f)/\sim$.
- There is a unique map $\phi: \Sigma^*_k \to \Sigma_d$ such that $(*)$ holds.
- It remains to check that ϕ is automatic. In fact, $\#N_k(\phi) \leq d$.

Automata

Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma^*_k = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma^*_k \to \Omega$ is the set of maps $\Sigma^*_k \to \Omega$ given by

$$N_k(\phi) = \{\phi_v : v \in \Sigma^*_k\},$$

where $\phi_v(u) := \phi(uv)$ for $u, v \in \Sigma^*_k$.

The map $\phi: \Sigma^*_k \to \Omega$ is k-automatic if $\#N_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \to \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;

2. there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ and a k-automatic map $\phi: \Sigma^*_k \to \Sigma_d$ such that for each $u \in \Sigma^*_k$ with length $\alpha := |u|$ we have

$$f(k^\alpha n + [u]_k) = f([(n)_ku]_k) \simeq f_{\phi(u)}(n).$$

(\ast)

- If the second condition holds, then $\#(N_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $N_k(f)/\simeq$.
- There is a unique map $\phi: \Sigma^*_k \to \Sigma_d$ such that (\ast) holds.
- It remains to check that ϕ is automatic. In fact, $\#N_k(\phi) \leq d$.
Automata

Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma_k^* = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

$$\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\#\mathcal{N}_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \to \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;

2. there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ and a k-automatic map $\phi: \Sigma_k^* \to \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f\left(k^\alpha n + [u]_k\right) = f\left([n]_k u\right) \simeq f_{\phi(u)}(n). \quad (*)$$

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi: \Sigma_k^* \to \Sigma_d$ such that $(*)$ holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d.
Recall that $\Sigma_k = \{0, 1, \ldots, k - 1\}$ and $\Sigma_k^* = \text{words over } \Sigma_k$.

Definition

The k-kernel of a map $\phi: \Sigma_k^* \to \Omega$ is the set of maps $\Sigma_k^* \to \Omega$ given by

$$\mathcal{N}_k(\phi) = \{\phi_v : v \in \Sigma_k^*\}, \quad \text{where } \phi_v(u) := \phi(uv) \text{ for } u, v \in \Sigma_k^*.$$

The map $\phi: \Sigma_k^* \to \Omega$ is k-automatic if $\# \mathcal{N}_k(\phi) < \infty$.

Lemma

Fix a base $k \geq 2$. For a sequence $f: \mathbb{N} \to \Omega$, the following conditions are equivalent.

1. f is asymptotically k-automatic;
2. there exists $d \in \mathbb{N}$, $f_0, f_1, \ldots, f_{d-1}: \mathbb{N} \to \Omega$ and a k-automatic map $\phi: \Sigma_k^* \to \Sigma_d$ such that for each $u \in \Sigma_k^*$ with length $\alpha := |u|$ we have

$$f(k^\alpha n + [u]_k) = f([(n)_k u]_k) \simeq f_{\phi(u)}(n). \quad (\ast)$$

- If the second condition holds, then $\#(\mathcal{N}_k(f)/\simeq) \leq d$, so we are done.
- Let f be asymptotically k-automatic, and let f_i be representatives of $\mathcal{N}_k(f)/\simeq$.
- There is a unique map $\phi: \Sigma_k^* \to \Sigma_d$ such that (\ast) holds.
- It remains to check that ϕ is automatic. In fact, $\#\mathcal{N}_k(\phi) \leq d$.

Two integers \(k, \ell \geq 2 \) are \textit{multiplicatively dependent} if they are both powers of the same integer: \(k = m^a, \ell = m^b \) \((m, a, b \in \mathbb{N})\).

\[\text{Fact} \]

If \(k, \ell \geq 2 \) are multiplicatively dependent, then \(k \)-automatic sequences are the same as \(\ell \)-automatic sequences. The same holds for asymptotically automatic sequences.

\[\text{Idea:} \] For simplicity, say \(\ell = k^c \) for \(c \in \mathbb{N} \). Then \(\Sigma_k^* \) can (almost) be identified with \(\Sigma_\ell^* \) by grouping blocks of \(c \) symbols.

A sequence \(f : \mathbb{N} \to \Omega \) is \textit{eventually periodic} if there exist \(n_0 \) and \(m > 0 \), such that \(f(n + m) = f(n) \) for all \(n \geq n_0 \).

\[\text{Fact} \]

Let \(f : \mathbb{N} \to \Omega \) be sequence that is eventually periodic. Then \(f \) is \(k \)-automatic for all bases \(k \geq 2 \).

\[\text{Basic question:} \] Given an automatic sequence \(f \), in which bases is it automatic?
Two integers \(k, \ell \geq 2 \) are *multiplicatively dependent* if they are both powers of the same integer: \(k = m^a, \ell = m^b \) (\(m, a, b \in \mathbb{N} \)).

Fact

If \(k, \ell \geq 2 \) are multiplicatively dependent, then \(k \)-automatic sequences are the same as \(\ell \)-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say \(\ell = k^c \) for \(c \in \mathbb{N} \). Then \(\Sigma_k^* \) can (almost) be identified with \(\Sigma_{\ell}^* \) by grouping blocks of \(c \) symbols.

A sequence \(f : \mathbb{N} \to \Omega \) is *eventually periodic* if there exist \(n_0 \) and \(m > 0 \), such that \(f(n + m) = f(n) \) for all \(n \geq n_0 \).

Fact

Let \(f : \mathbb{N} \to \Omega \) be sequence that is eventually periodic. Then \(f \) is \(k \)-automatic for all bases \(k \geq 2 \).

Basic question: Given an automatic sequence \(f \), in which bases is it automatic?
Bases

Two integers $k, \ell \geq 2$ are *multiplicatively dependent* if they are both powers of the same integer: $k = m^a$, $\ell = m^b$ ($m, a, b \in \mathbb{N}$).

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f : \mathbb{N} \to \Omega$ is *eventually periodic* if there exist n_0 and $m > 0$, such that $f(n + m) = f(n)$ for all $n \geq n_0$.

Fact

Let $f : \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$.

Basic question: Given an automatic sequence f, in which bases is it automatic?
Bases

Two integers $k, \ell \geq 2$ are *multiplicatively dependent* if they are both powers of the same integer: $k = m^a$, $\ell = m^b$ ($m, a, b \in \mathbb{N}$).

Fact

If $k, \ell \geq 2$ are multiplicatively dependent, then k-automatic sequences are the same as ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say $\ell = k^c$ for $c \in \mathbb{N}$. Then Σ_k^* can (almost) be identified with Σ_ℓ^* by grouping blocks of c symbols.

A sequence $f : \mathbb{N} \to \Omega$ is *eventually periodic* if there exist n_0 and $m > 0$, such that $f(n + m) = f(n)$ for all $n \geq n_0$.

Fact

*Let $f : \mathbb{N} \to \Omega$ be sequence that is eventually periodic. Then f is k-automatic for all bases $k \geq 2$."

Basic question: Given an automatic sequence f, in which bases is it automatic?
Cobham’s theorem

Theorem (Cobham, 1969)

Let $k, \ell \geq 2$ be two bases and let $f : \mathbb{N} \to \Omega$ be a sequence. If f is k-automatic and ℓ-automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

$$\emptyset, \quad \{k^a : a \geq 1\} \text{ for some } k \geq 2, \quad \mathbb{N}.$$

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue–Morse sequence.
Cobham’s theorem

Theorem (Cobham, 1969)

Let \(k, \ell \geq 2 \) be two bases and let \(f : \mathbb{N} \to \Omega \) be a sequence. If \(f \) is \(k \)-automatic and \(\ell \)-automatic, then either

- the bases \(k \) and \(\ell \) are multiplicatively dependent, or
- the sequence \(f \) is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

\[
\emptyset, \quad \{k^a : a \geq 1\} \text{ for some } k \geq 2, \quad \mathbb{N}.
\]

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no \(3 \)-automaton which computes the Thue–Morse sequence.
Cobham’s theorem

Theorem (Cobham, 1969)

Let $k, \ell \geq 2$ be two bases and let $f : \mathbb{N} \to \Omega$ be a sequence. If f is k-automatic and ℓ-automatic, then either

- the bases k and ℓ are multiplicatively dependent, or
- the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

- \emptyset,
- $\{k^a : a \geq 1\}$ for some $k \geq 2$,
- \mathbb{N}.

Intuition: A sequence cannot be automatic in two different bases (except for trivial cases).

Example

There is no 3-automaton which computes the Thue–Morse sequence.
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., …

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold *mutatis mutandis* when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are *asymptotically equal* [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- **Multidimensional sequences** [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of *one* sequence \(f : \mathbb{N} \rightarrow \Omega \), we can consider *two* sequences \(f, g : \mathbb{N} \rightarrow \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold *mutatis mutandis* when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are *asymptotically equal* [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- **Multidimensional sequences** [Semenov 1977].
- **Morphic sequences** [Durand 2011].
- **Fractals** [Adamczewski, Bell 2011].
- **Regular sequences** [Bell 2007].
- **Mahler series** [Adamczewski, Bell 2017].
- **Real numbers** [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold *mutatis mutandis* when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are asymptotically equal [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., . . .

Instead of one sequence $f: \mathbb{N} \rightarrow \Omega$, we can consider two sequences $f, g: \mathbb{N} \rightarrow \Omega$ that are k- and ℓ-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold mutatis mutandis when the assumption that $f = g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are asymptotically equal [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- **Multidimensional sequences** [Semenov 1977].
- **Morphic sequences** [Durand 2011].
- **Fractals** [Adamczewski, Bell 2011].
- **Regular sequences** [Bell 2007].
- **Mahler series** [Adamczewski, Bell 2017].
- **Real numbers** [Boigelot, Brusten 2009].
- etc., etc., . . .

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold \textit{mutatis mutandis} when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are \textit{asymptotically equal} [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence \(f : \mathbb{N} \rightarrow \Omega \), we can consider two sequences \(f, g : \mathbb{N} \rightarrow \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold *mutatis mutandis* when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are *asymptotically equal* [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence $f : \mathbb{N} \to \Omega$, we can consider two sequences $f, g : \mathbb{N} \to \Omega$ that are k- and ℓ-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold \textit{mutatis mutandis} when the assumption that $f = g$ is weakened to:

- The sequences f and g generate the same language [Fagnot 1997].
- The sequences f and g are \textit{asymptotically equal} [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., ...

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold mutatis mutandis when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are asymptotically equal [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., . . .

Instead of one sequence \(f : \mathbb{N} \rightarrow \Omega \), we can consider two sequences \(f, g : \mathbb{N} \rightarrow \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold \(\textit{mutatis mutandis} \) when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are \(\textit{asymptotically equal} \) [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., . . .

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold mutatis mutandis when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are asymptotically equal [Byszewski, K. 2017].
Generalisations of Cobham’s theorem

Analogues of Cobham’s theorem are known in the following contexts:

- Multidimensional sequences [Semenov 1977].
- Morphic sequences [Durand 2011].
- Fractals [Adamczewski, Bell 2011].
- Regular sequences [Bell 2007].
- Mahler series [Adamczewski, Bell 2017].
- Real numbers [Boigelot, Brusten 2009].
- etc., etc., . . .

Instead of one sequence \(f : \mathbb{N} \to \Omega \), we can consider two sequences \(f, g : \mathbb{N} \to \Omega \) that are \(k \)- and \(\ell \)-automatic respectively, and which are “close enough”. Cobham’s theorem continues to hold \textit{mutatis mutandis} when the assumption that \(f = g \) is weakened to:

- The sequences \(f \) and \(g \) generate the same language [Fagnot 1997].
- The sequences \(f \) and \(g \) are \textit{asymptotically equal} [Byszewski, K. 2017].
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of $n!$)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence $\ell_k(n!)$ is p_1-automatic as long as $\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1)$.
- Rationale: $\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For $k = 12$ we have $\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f : \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for $y = 3, 6, 9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham’s theorem that $1_y(\ell_{12}(n!))$ is not automatic for $y = 4, 8$.
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \to \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \to \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
- More generally, let \(k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1) \).
- Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).
- For \(k = 12 \) we have \(\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a 3-automatic sequence \(f : \mathbb{N} \to \{4, 8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.
- It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \to \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \to \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
- More generally, let \(k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1) \).
- Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).
- For \(k = 12 \) we have \(\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a 3-automatic sequence \(f : \mathbb{N} \to \{4, 8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.
- It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \to \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \to \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
 - Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
 - More generally, let \(k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1) \).
 - Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).
 - For \(k = 12 \) we have \(\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a 3-automatic sequence \(f : \mathbb{N} \to \{4, 8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.
 - It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \rightarrow \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \rightarrow \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
- More generally, let \(k = p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[\alpha_1(p_1 − 1) \geq \alpha_2(p_2 − 1) \geq \cdots \geq \alpha_r(p_r − 1). \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 − 1) \neq \alpha_2(p_2 − 1) \).
- Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p-1} \approx \frac{n}{p-1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).
- For \(k = 12 \) we have \(\alpha_1(p_1 − 1) = \alpha_2(p_2 − 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a 3-automatic sequence \(f : \mathbb{N} \rightarrow \{4, 8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.
- It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of $n!$)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where

$$\alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).$$

The sequence $\ell_k(n!)$ is p_1-automatic as long as $\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1)$.

- Rationale: $\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1}$, so we expect that $\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1}$.
- For $k = 12$ we have $\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f : \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for $y = 3, 6, 9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham’s theorem that $1_y(\ell_{12}(n!))$ is not automatic for $y = 4, 8$.

Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \to \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \to \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
- More generally, let \(k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1) \).
- Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).

 For \(k = 12 \) we have \(\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a 3-automatic sequence \(f : \mathbb{N} \to \{4,8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.

 It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ-automatic sequence such that $f(n) \sim g(n)$. Then f and g are asymptotically periodic.

Example (Least significant digit of $n!$)

- Let $\ell_k(n)$ denote the first non-zero digit of n in base k, e.g. $\ell_{10}(10!) = \ell_{10}(3628800) = 8$.
- The sequences $\ell_k(n!)$ were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If k is a prime power then $\ell_k(n!)$ is k-automatic.
- More generally, let $k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ be the prime factorisation of k, where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence $\ell_k(n!)$ is p_1-automatic as long as $\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1)$.
- Rationale: $\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1}$, so we expect that $\ell_k(n!) \equiv 0 \pmod{k/p_1^{\alpha_1}}$.
- For $k = 12$ we have $\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2$. Deshouillers and Ruzsa showed that $\ell_{12}(n!) \simeq f(n)$ for a 3-automatic sequence $f : \mathbb{N} \to \{4, 8\}$. Also, $1_y(\ell_{12}(n!))$ is not automatic for $y = 3, 6, 9$, and in particular, $\ell_{12}(n!)$ is not automatic.
- It follows from density Cobham’s theorem that $1_y(\ell_{12}(n!))$ is not automatic for $y = 4, 8$.
Density version of Cobham’s theorem

Theorem (Byszewski, K. 2017)

Let \(k, \ell \geq 2 \) be two multiplicatively independent bases. Let \(f : \mathbb{N} \to \Omega \) be a \(k \)-automatic sequence and let \(g : \mathbb{N} \to \Omega \) be an \(\ell \)-automatic sequence such that \(f(n) \simeq g(n) \). Then \(f \) and \(g \) are asymptotically periodic.

Example (Least significant digit of \(n! \))

- Let \(\ell_k(n) \) denote the first non-zero digit of \(n \) in base \(k \), e.g. \(\ell_{10}(10!) = \ell_{10}(3628800) = 8 \).
- The sequences \(\ell_k(n!) \) were studied by Deshouillers and Ruzsa, among others.
- Interesting feature: If \(k \) is a prime power then \(\ell_k(n!) \) is \(k \)-automatic.
- More generally, let \(k = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} \) be the prime factorisation of \(k \), where
 \[
 \alpha_1(p_1 - 1) \geq \alpha_2(p_2 - 1) \geq \cdots \geq \alpha_r(p_r - 1).
 \]
 The sequence \(\ell_k(n!) \) is \(p_1 \)-automatic as long as \(\alpha_1(p_1 - 1) \neq \alpha_2(p_2 - 1) \).
- Rationale: \(\nu_p(n!) = \frac{n - s_p(n)}{p - 1} \approx \frac{n}{p - 1} \), so we expect that \(\ell_k(n!) \equiv 0 \mod k/p_1^{\alpha_1} \).
- For \(k = 12 \) we have \(\alpha_1(p_1 - 1) = \alpha_2(p_2 - 1) = 2 \). Deshouillers and Ruzsa showed that \(\ell_{12}(n!) \simeq f(n) \) for a \(3 \)-automatic sequence \(f : \mathbb{N} \to \{4, 8\} \). Also, \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 3, 6, 9 \), and in particular, \(\ell_{12}(n!) \) is not automatic.
- It follows from density Cobham’s theorem that \(1_y(\ell_{12}(n!)) \) is not automatic for \(y = 4, 8 \).
Asymptotic versions of Cobham’s theorem

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Asymptotic Cobham’s theorem \iff Density Cobham’s theorem.

Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ-automatic. Hence, by asymptotic Cobham’s theorem, f is asymptotically periodic.
Asymptotic versions of Cobham’s theorem

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Asymptotic Cobham’s theorem \implies Density Cobham’s theorem.

Let $f : \mathbb{N} \to \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \to \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ-automatic. Hence, by asymptotic Cobham’s theorem, f is asymptotically periodic.
Asymptotic versions of Cobham’s theorem

Theorem (K. 2022)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically shift invariant.

Theorem (K. 2022)
Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \rightarrow \Omega$ be a sequence that is (classically) k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Asymptotic Cobham’s theorem \implies Density Cobham’s theorem.
Let $f : \mathbb{N} \rightarrow \Omega$ be a k-automatic sequence and let $g : \mathbb{N} \rightarrow \Omega$ be an ℓ-automatic sequence such that $f(n) \simeq g(n)$. Then f is asymptotically ℓ-automatic. Hence, by asymptotic Cobham’s theorem, f is asymptotically periodic.
Asymptotic versions of Cobham’s theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \to \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Unfortunately(?), this is false.

Example

Let us order all integers of the form $2^\alpha 3^\beta$ in increasing order

$$\mathcal{H} := \{H_0 < H_1 < H_2 < \cdots \} := \left\{2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}.$$

Let $H_i = 2^{\alpha_i} 3^{\beta_i}$ and define $f : \mathbb{N} \to \{-1, +1\}$ by

$$f(n) := (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0.$$

We will show that f is asymptotically 2- and 3-automatic, but not asymptotically periodic.
Asymptotic versions of Cobham’s theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let $k, \ell \geq 2$ be two multiplicatively independent bases. Let $f : \mathbb{N} \rightarrow \Omega$ be a sequence that is asymptotically k-automatic and asymptotically ℓ-automatic. Then f is asymptotically periodic.

Unfortunately(?), this is false.

Example

Let us order all integers of the form $2^\alpha 3^\beta$ in increasing order

$$\mathcal{H} := \{H_0 < H_1 < H_2 < \cdots \} := \{2^\alpha 3^\beta : \alpha, \beta \geq 0\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}.$$

Let $H_i = 2^{\alpha_i} 3^{\beta_i}$ and define $f : \mathbb{N} \rightarrow \{-1, +1\}$ by

$$f(n) := (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0.$$

We will show that f is asymptotically 2- and 3-automatic, but not asymptotically periodic.
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{ H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty. \) Proof: Kronecker equidistribution theorem.

Lemma

\[f(n+1) \asymp f(n) \quad f(2n) \asymp -f(n) \quad f(3n) \asymp -f(n) \]

- We only discuss \(f(2n) \asymp -f(n). \) Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n). \)
- We have \(2n \in [2H_i, 2H_{i+1}), \) where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H}. \)
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i+1+\beta_i} = -f(n), \) so \(j' \geq j + 2. \)
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1}. \) Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2. \)
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right] = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right). \)
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta). \) Take sum w.r.t. \(\beta. \) \qed
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{ H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{ 1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty \).
Proof: Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \sim f(n) \quad f(2n) \sim -f(n) \quad f(3n) \sim -f(n) \]

- We only discuss \(f(2n) \sim -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}), \) where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + 1 + \beta_i} = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right) = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right) \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \).
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{ H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \text{ as } i \to \infty. \) Proof: Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \sim f(n) \quad f(2n) \sim -f(n) \quad f(3n) \sim -f(n) \]

- We only discuss \(f(2n) \sim -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}) \), where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_j + \beta_j} = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2} \right) = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1)) \right) \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1} \right) \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \). \(\square \)
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{ H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \} . \]

\[H_i = 2^{\alpha_i} 3^{\beta_i} , \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0 . \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty \).
Proof: Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n) \]

- We only discuss \(f(2n) \simeq -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}) \), where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_j' \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + 1 + \beta_i} = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right) = \left[3^{\beta_j+1}, 3^{\beta_j+1}(1 + o(1))\right) \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \).
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \} \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \rightarrow 1 \) as \(i \rightarrow \infty \).

Proof: Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n) \]

- We only discuss \(f(2n) \simeq -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}) \), where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + 1 + \beta_i} = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right] = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right) \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \).
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \text{ as } i \to \infty. \) **Proof:** Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n) \]

- We only discuss \(f(2n) \simeq -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}) \), where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + 1} + \beta_i = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \mid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right] = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right) \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \).
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i+\beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty \). Proof: Kronecker equidistribution theorem.

Lemma

\[f(n+1) \approx f(n) \quad f(2n) \approx -f(n) \quad f(3n) \approx -f(n) \]

- We only discuss \(f(2n) \approx -f(n) \). Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n) \).
- We have \(2n \in [2H_i, 2H_{i+1}) \), where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H} \).
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i+\beta_i} = -f(n) \), so \(j' \geq j + 2 \).
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1} \). Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2 \).
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right] = \left[3^{\beta_j+1}, 3^{\beta_j+1}(1 + o(1))\right] \).
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right] \) is \(o(3^\beta) \). Take sum w.r.t. \(\beta \). \(\square \)
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{ 2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty. \) **Proof:** Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \asymp f(n) \quad f(2n) \asymp -f(n) \quad f(3n) \asymp -f(n) \]

- We only discuss \(f(2n) \asymp -f(n). \) Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n). \)
- We have \(2n \in [2H_i, 2H_{i+1}), \) where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H}. \)
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + 1} + \beta_i = -f(n), \) so \(j' \geq j + 2. \)
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1}. \) Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2. \)
- Summarising, we have \(2n \in [H_{j+1}, H_{j+2}) = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1)) \right). \)
- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1} \right) \) is \(o(3^\beta). \) Take sum w.r.t. \(\beta. \)
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1}/H_i \to 1 \) as \(i \to \infty. \)
Proof: Kronecker equidistribution theorem.

Lemma

\[
 f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n)
\]

- We only discuss \(f(2n) \simeq -f(n). \) Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n). \)
- We have \(2n \in [2H_i, 2H_{i+1}), \) where \(2H_i =: H_j \in \mathcal{H} \) and \(2H_{i+1} =: H_{j'} \in \mathcal{H}. \)
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{(\alpha_i+1)+\beta_i} = -f(n), \) so \(j' \geq j + 2. \)
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1}. \) Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'}) \) cannot contain two powers of 3, we have \(j' = j + 2. \)
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right) = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right). \)

- Thus, the number of “bad” \(n \)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta). \) Take sum w.r.t. \(\beta. \)
Example in bases 2 and 3

Reminder about notation:

\[\mathcal{H} = \{H_0 < H_1 < H_2 < \cdots \} = \left\{2^\alpha 3^\beta : \alpha, \beta \geq 0 \right\} = \{1, 2, 3, 4, 6, 8, 9, 12, \ldots \}. \]

\[H_i = 2^{\alpha_i} 3^{\beta_i}, \quad f(n) = (-1)^{\alpha_i + \beta_i} \text{ for } n \in [H_i, H_{i+1}) \text{ and } i \geq 0. \]

Fact: \(H_{i+1} / H_i \to 1 \) as \(i \to \infty. \) **Proof:** Kronecker equidistribution theorem.

Lemma

\[f(n + 1) \simeq f(n), \quad f(2n) \simeq -f(n), \quad f(3n) \simeq -f(n). \]

- We only discuss \(f(2n) \simeq -f(n). \) Consider any \(n \in [H_i, H_{i+1}) \) with \(f(2n) = f(n). \)
- We have \(2n \in [2H_i, 2H_{i+1}), \) where \(2H_i =: H_j \in \mathcal{H} \text{ and } 2H_{i+1} =: H_j' \in \mathcal{H}. \)
- If \(2n \in [H_j, H_{j+1}) \) then \(f(2n) = (-1)^{\alpha_i + \beta_i} = -f(n), \) so \(j' \geq j + 2. \)
- Since \(H_i < H_{j+1}/2 < H_{i+1} \) we have \(2 \nmid H_{j+1}. \) Thus, \(H_{j+1} \) is a power of 3.
- Since \([H_j, H_{j'})\) cannot contain two powers of 3, we have \(j' = j + 2. \)
- Summarising, we have \(2n \in \left[H_{j+1}, H_{j+2}\right) = \left[3^{\beta_{j+1}}, 3^{\beta_{j+1}}(1 + o(1))\right). \)
- Thus, the number of “bad” \(n\)'s in \(\left[\frac{1}{2} 3^\beta, \frac{1}{2} 3^{\beta+1}\right) \) is \(o(3^\beta). \) Take sum w.r.t. \(\beta. \) \(\square \)
Example in bases 2 and 3

Reminder:

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\# (N_2(f)/\simeq) \leq 2 \) and \(\# (N_3(f)/\simeq) \leq 2 \).

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n + 1) \simeq f(n) \), also \(\tilde{f}(n + 1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\#(\mathcal{N}_2(f)/\simeq) \leq 2 \) and \(\#(\mathcal{N}_3(f)/\simeq) \leq 2. \)

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n + 1) \simeq f(n) \), also \(\tilde{f}(n + 1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\# (\mathcal{N}_2(f)/\simeq) \leq 2 \) and \(\# (\mathcal{N}_3(f)/\simeq) \leq 2. \)

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n+1) \simeq f(n) \), also \(\tilde{f}(n+1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\#(N_2(f)/\simeq) \leq 2 \) and \(\#(N_3(f)/\simeq) \leq 2 \).

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
 - Since \(f(n + 1) \simeq f(n) \), also \(\tilde{f}(n + 1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
 - Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[f(n + 1) \sim f(n) \quad f(2n) \sim -f(n) \quad f(3n) \sim -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\# (\mathcal{N}_2(f)/\sim) \leq 2 \) and \(\# (\mathcal{N}_3(f)/\sim) \leq 2. \)

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \sim \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n + 1) \sim f(n) \), also \(\tilde{f}(n + 1) \sim \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \sim -f(n) \), also \(\tilde{f}(2n) \sim -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[
 f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n).
\]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\#(\mathcal{N}_2(f)/\simeq) \leq 2 \) and \(\#(\mathcal{N}_3(f)/\simeq) \leq 2 \).

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n+1) \simeq f(n) \), also \(\tilde{f}(n+1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Example in bases 2 and 3

Reminder:

\[f(n + 1) \simeq f(n) \quad f(2n) \simeq -f(n) \quad f(3n) \simeq -f(n). \]

Corollary

The sequence \(f \) is asymptotically 2- and 3-automatic.

In fact, \(\#(\mathcal{N}_2(f)/\sim) \leq 2 \) and \(\#(\mathcal{N}_3(f)/\sim) \leq 2. \)

Lemma

The sequence \(f \) is not asymptotically periodic.

- Suppose, for the sake of contradiction, that \(f(n) \simeq \tilde{f}(n) \) for periodic \(\tilde{f} \).
- Since \(f(n + 1) \simeq f(n) \), also \(\tilde{f}(n + 1) \simeq \tilde{f}(n) \) and hence \(\tilde{f}(n) = c = \pm 1 \) is constant.
- Since \(f(2n) \simeq -f(n) \), also \(\tilde{f}(2n) \simeq -\tilde{f}(n) \), so \(c = -c \), but this is impossible.

Summary: A sequence that is asymptotically \(k \)- and \(\ell \)-automatic for multiplicatively independent \(k, \ell \geq 2 \) does not need to be asymptotically periodic.
Bases of automaticity

For a sequence \(f : \mathbb{N} \rightarrow \Omega \), put \(B_{\text{aut}}(f) := \{ k \in \mathbb{N} : f \text{ is } k\text{-automatic} \} \).

Theorem (Cobham; alternative phrasing)

Let \(f : \mathbb{N} \rightarrow \Omega \) be a sequence. Then \(B_{\text{aut}}(f) \) one of:

- the empty set \(\emptyset \) (i.e., \(f \) is not automatic);
- a geometric progression \(\{ k^a : a \geq 1 \} \) for some \(k \geq 2 \);
- all integers \(\mathbb{N} \) (i.e., \(f \) is eventually periodic).

In the same spirit, put \(B_{\text{asy}}(f) := \{ k \in \mathbb{N} : f \text{ is asymptotically } k\text{-automatic} \} \).

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let \(f : \mathbb{N} \rightarrow \Omega \) be a sequence. Then one of the following holds:

- \(B_{\text{aut}}(f) = \emptyset \) (i.e., \(f \) is not automatic);
- \(B_{\text{asy}}(f) = B_{\text{aut}}(f) = \{ k^a : a \in \mathbb{N} \} \) for some \(k \geq 2 \);
- \(B_{\text{asy}}(f) = B_{\text{aut}}(f) = \mathbb{N} \) (i.e., \(f \) is asymptotically periodic).
Bases of automaticity

For a sequence \(f : \mathbb{N} \rightarrow \Omega \), put \(\mathcal{B}_{\text{aut}}(f) := \{ k \in \mathbb{N} : f \text{ is } k\text{-automatic} \} \).

Theorem (Cobham; alternative phrasing)

Let \(f : \mathbb{N} \rightarrow \Omega \) be a sequence. Then \(\mathcal{B}_{\text{aut}}(f) \) one of:
- the empty set \(\emptyset \) (i.e., \(f \) is not automatic);
- a geometric progression \(\{ k^a : a \geq 1 \} \) for some \(k \geq 2 \);
- all integers \(\mathbb{N} \) (i.e., \(f \) is eventually periodic).

In the same spirit, put \(\mathcal{B}_{\text{asy}}(f) := \{ k \in \mathbb{N} : f \text{ is asymptotically } k\text{-automatic} \} \).

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let \(f : \mathbb{N} \rightarrow \Omega \) be a sequence. Then one of the following holds:
- \(\mathcal{B}_{\text{aut}}(f) = \emptyset \) (i.e., \(f \) is not automatic);
- \(\mathcal{B}_{\text{asy}}(f) = \mathcal{B}_{\text{aut}}(f) = \{ k^a : a \in \mathbb{N} \} \) for some \(k \geq 2 \);
- \(\mathcal{B}_{\text{asy}}(f) = \mathcal{B}_{\text{aut}}(f) = \mathbb{N} \) (i.e., \(f \) is asymptotically periodic).
Bases of automaticity

For a sequence $f: \mathbb{N} \to \Omega$, put $B_{\text{aut}}(f) := \{k \in \mathbb{N} : f \text{ is } k\text{-automatic}\}$.

Theorem (Cobham; alternative phrasing)

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then $B_{\text{aut}}(f)$ one of:

- the empty set \emptyset (i.e., f is not automatic);
- a geometric progression $\{k^a : a \geq 1\}$ for some $k \geq 2$;
- all integers \mathbb{N} (i.e., f is eventually periodic).

In the same spirit, put $B_{\text{asy}}(f) := \{k \in \mathbb{N} : f \text{ is asymptotically } k\text{-automatic}\}$.

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let $f: \mathbb{N} \to \Omega$ be a sequence. Then one of the following holds:

- $B_{\text{aut}}(f) = \emptyset$ (i.e., f is not automatic);
- $B_{\text{asy}}(f) = B_{\text{aut}}(f) = \{k^a : a \in \mathbb{N}\}$ for some $k \geq 2$;
- $B_{\text{asy}}(f) = B_{\text{aut}}(f) = \mathbb{N}$ (i.e., f is asymptotically periodic).
Bases of automaticity

Lemma

Let \(f : \mathbb{N} \to \Omega \) be a sequence. Then the set \(\mathcal{B}_{\text{asy}}(f) \) of bases with respect to which \(f \) is asymptotically automatic has the following closure properties:

- if \(k, \ell \in \mathcal{B}_{\text{asy}}(f) \) then \(k\ell \in \mathcal{B}_{\text{asy}}(f) \);
- if \(k, \ell \in \mathcal{B}_{\text{asy}}(f) \) and \(k/\ell \in \mathbb{N} \) then \(k/\ell \in \mathcal{B}_{\text{asy}}(f) \);
- if \(k \in \mathcal{B}_{\text{asy}}(f) \), \(a \in \mathbb{Q}_+ \) and \(k^a \in \mathbb{N} \) then \(k^a \in \mathcal{B}_{\text{asy}}(f) \).

Corollary

Let \(f : \mathbb{N} \to \Omega \) be a sequence. There exists a vector space \(V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q} \) such that

\[
\mathcal{B}_{\text{asy}}(f) = \{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \}.
\]

Conjecture: The converse is also true.
Bases of automaticity

Lemma

Let $f : \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{\text{asy}}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- If $k, \ell \in \mathcal{B}_{\text{asy}}(f)$ then $k\ell \in \mathcal{B}_{\text{asy}}(f)$;
- If $k, \ell \in \mathcal{B}_{\text{asy}}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{\text{asy}}(f)$;
- If $k \in \mathcal{B}_{\text{asy}}(f)$, $a \in \mathbb{Q}^+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{\text{asy}}(f)$.

Corollary

Let $f : \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

$$\mathcal{B}_{\text{asy}}(f) = \{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \}.$$

Conjecture: The converse is also true.
Bases of automaticity

Lemma

Let $f : \mathbb{N} \to \Omega$ be a sequence. Then the set $\mathcal{B}_{\text{asy}}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in \mathcal{B}_{\text{asy}}(f)$ then $k\ell \in \mathcal{B}_{\text{asy}}(f)$;
- if $k, \ell \in \mathcal{B}_{\text{asy}}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in \mathcal{B}_{\text{asy}}(f)$;
- if $k \in \mathcal{B}_{\text{asy}}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in \mathcal{B}_{\text{asy}}(f)$.

Corollary

Let $f : \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

$$\mathcal{B}_{\text{asy}}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$$

Conjecture: The converse is also true.
Lemma

Let $f : \mathbb{N} \to \Omega$ be a sequence. Then the set $B_{\text{asy}}(f)$ of bases with respect to which f is asymptotically automatic has the following closure properties:

- if $k, \ell \in B_{\text{asy}}(f)$ then $k\ell \in B_{\text{asy}}(f)$;
- if $k, \ell \in B_{\text{asy}}(f)$ and $k/\ell \in \mathbb{N}$ then $k/\ell \in B_{\text{asy}}(f)$;
- if $k \in B_{\text{asy}}(f)$, $a \in \mathbb{Q}_+$ and $k^a \in \mathbb{N}$ then $k^a \in B_{\text{asy}}(f)$.

Corollary

Let $f : \mathbb{N} \to \Omega$ be a sequence. There exists a vector space $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ such that

$$B_{\text{asy}}(f) = \{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \}.$$

Conjecture: The converse is also true.
Open problems

Conjecture

Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f : \mathbb{N} \to \Omega$ such that

$$\mathcal{B}_{\text{asy}}(f) = \{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \}.$$

Question

Are the following situations possible?

- $\mathcal{B}_{\text{asy}}(f) = \{2^a 3^b : a, b \in \mathbb{N}\}$ (we know: $\mathcal{B}_{\text{asy}}(f) \supseteq \{2^a 3^b : a, b \in \mathbb{N}\}$ is possible);
- $\mathcal{B}_{\text{asy}}(f) = \{2^a 3^b 5^c : a, b, c \in \mathbb{N}\}$;
- $\mathcal{B}_{\text{asy}}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, *but* proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is *not* asymptotically k-automatic for given $k \geq 2$.
Open problems

Conjecture

Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f : \mathbb{N} \to \Omega$ such that

$$\mathcal{B}_{\text{asy}}(f) = \{ k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V \}.$$

Question

Are the following situations possible?

- $\mathcal{B}_{\text{asy}}(f) = \{ 2^a 3^b : a, b \in \mathbb{N} \}$ (we know: $\mathcal{B}_{\text{asy}}(f) \supseteq \{ 2^a 3^b : a, b \in \mathbb{N} \}$ is possible);
- $\mathcal{B}_{\text{asy}}(f) = \{ 2^a 3^b 5^c : a, b, c \in \mathbb{N} \}$;
- $\mathcal{B}_{\text{asy}}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments

- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \geq 2$.
Open problems

Conjecture
Let $V < \bigoplus_{p \in \mathcal{P}} \mathbb{Q}$ be a vector space. Then there exists a sequence $f : \mathbb{N} \to \Omega$ such that
$$\mathcal{B}_{\text{asy}}(f) = \{k \in \mathbb{N}_{\geq 2} : (\nu_p(f))_{p \in \mathcal{P}} \in V\}.$$

Question
Are the following situations possible?
- $\mathcal{B}_{\text{asy}}(f) = \{2^a3^b : a, b \in \mathbb{N}\}$ (we know: $\mathcal{B}_{\text{asy}}(f) \supseteq \{2^a3^b : a, b \in \mathbb{N}\}$ is possible);
- $\mathcal{B}_{\text{asy}}(f) = \{2^a3^b5^c : a, b, c \in \mathbb{N}\}$;
- $\mathcal{B}_{\text{asy}}(f) = \mathbb{N}$, but f is not asymptotically periodic.

Comments
- It is straightforward to generalise the example for bases 2 and 3 to any finite set of primes, but proving $f(pn) \simeq -f(n)$ requires a new argument.
- There are currently no good tools for proving that a given sequence f is not asymptotically k-automatic for given $k \geq 2$.

Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\sim; \quad \vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f)/\sim; \quad \vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;
- $\phi : \Sigma_k^* \to \Sigma_d$ is k-automatic and $f \left(k^\alpha n + [u]_k \right) \sim f_{\phi(u)}(n)$;
- $\psi : \Sigma_\ell^* \to \Sigma_e$ is ℓ-automatic and $f \left(\ell^\beta n + [v]_\ell \right) \sim f_{\psi(v)}(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus

 \[f \left(k^\alpha n + m \right) \sim f_{\phi((m)_k)}(n) \quad f \left(\ell^\beta n + m \right) \sim f_{\psi((m)_\ell)}(n) \quad \text{for each } m \in \mathbb{N}. \]
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- \(k, \ell \geq 2 \) are multiplicatively independent integers;
- \(f : \mathbb{N} \to \Omega \) is asymptotically \(k \)-automatic and asymptotically \(\ell \)-automatic;
- \(f_0, f_1, \ldots, f_{d-1} \) are representatives of \(\mathcal{N}_k(f) / \simeq \); \(\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d \);
- \(g_0, g_1, \ldots, g_{e-1} \) are representatives of \(\mathcal{N}_\ell(f) / \simeq \); \(\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e \);
- \(\phi : \Sigma_k^* \to \Sigma_d \) is \(k \)-automatic and \(f(k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n) \);
- \(\psi : \Sigma_\ell^* \to \Sigma_e \) is \(\ell \)-automatic and \(f(\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n) \);
- To simplify: \(\phi(0u) = \phi(u) \) for \(u \in \Sigma_k^* \) and \(\psi(0v) = \psi(v) \) for \(v \in \Sigma_\ell^* \); thus
 \[
 f(k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f(\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n) \quad \text{for each} \ m \in \mathbb{N}.
 \]
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq$; $\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f)/\simeq$; $\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;
- $\phi : \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n)$;
- $\psi : \Sigma_\ell^* \to \Sigma_e$ is ℓ-automatic and $f(\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus

 $f(k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f(\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n)$ for each $m \in \mathbb{N}$.
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;

- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;

- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq$; $\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;

- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f)/\simeq$; $\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;

- $\phi : \Sigma^*_k \to \Sigma_d$ is k-automatic and $f (k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n)$;

- $\psi : \Sigma^*_\ell \to \Sigma_e$ is ℓ-automatic and $f (\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n)$;

- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma^*_k$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma^*_\ell$; thus

$$f (k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f (\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n) \quad \text{for each } m \in \mathbb{N}.$$
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f) / \simeq$; $\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f) / \simeq$; $\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;
- $\phi : \Sigma^*_k \to \Sigma_d$ is k-automatic and $f (k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n)$;
- $\psi : \Sigma^*_\ell \to \Sigma_e$ is ℓ-automatic and $f (\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma^*_k$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma^*_\ell$; thus

$$f (k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f (\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n) \quad \text{for each } m \in \mathbb{N}.$$
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f) \simeq; \ \vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f) \simeq; \ \vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;
- $\phi : \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n)$;
- $\psi : \Sigma_\ell^* \to \Sigma_e$ is ℓ-automatic and $f(\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus

 $f(k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f(\ell^\beta n + m) \simeq f_{\psi((m)_{\ell})}(n)$
 for each $m \in \mathbb{N}$.
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f) / \simeq$; $\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \to \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f) / \simeq$; $\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \to \Omega^e$;
- $\phi : \Sigma_k^* \to \Sigma_d$ is k-automatic and $f(k^\alpha n + [u]_k) \simeq f_{\phi(u)}(n)$;
- $\psi : \Sigma_\ell^* \to \Sigma_e$ is ℓ-automatic and $f(\ell^\beta n + [v]_\ell) \simeq f_{\psi(v)}(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(v)$ for $v \in \Sigma_\ell^*$; thus

\[f(k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f(\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n) \quad \text{for each } m \in \mathbb{N}. \]
Proof of asymptotic Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \rightarrow \Omega$ is asymptotically k-automatic and asymptotically ℓ-automatic;
- $f_0, f_1, \ldots, f_{d-1}$ are representatives of $\mathcal{N}_k(f)/\simeq$; $\vec{f} := (f_0, f_1, \ldots, f_{d-1}) : \mathbb{N} \rightarrow \Omega^d$;
- $g_0, g_1, \ldots, g_{e-1}$ are representatives of $\mathcal{N}_\ell(f)/\simeq$; $\vec{g} := (g_0, g_1, \ldots, g_{e-1}) : \mathbb{N} \rightarrow \Omega^e$;
- $\phi : \Sigma_k^* \rightarrow \Sigma_d$ is k-automatic and $f(k^\alpha n + [u]_k) \simeq f_\phi(u)(n)$;
- $\psi : \Sigma_\ell^* \rightarrow \Sigma_e$ is ℓ-automatic and $f(\ell^\beta n + [v]_\ell) \simeq f_\psi(v)(n)$;
- To simplify: $\phi(0u) = \phi(u)$ for $u \in \Sigma_k^*$ and $\psi(0v) = \psi(u)$ for $v \in \Sigma_\ell^*$; thus
 \[f(k^\alpha n + m) \simeq f_{\phi((m)_k)}(n) \quad f(\ell^\beta n + m) \simeq f_{\psi((m)_\ell)}(n) \quad \text{for each } m \in \mathbb{N}. \]
Proof of asymptotic Cobham’s theorem

Lemma

Let \(\alpha, \beta \in \mathbb{N} \), \(\vec{x} \in \Omega^d \), \(\vec{y} \in \Omega^e \) and \(E := \{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^{\alpha} n) = \vec{y} \} \). Suppose that \(\bar{d}(E) > 0 \). Then \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) for all \(0 \leq m < \min(k^{\alpha}, \ell^\beta) \).

Proof of Lemma:

- \(f(k^{\alpha} \ell^\beta n + m) = f_{\phi((m)_k)}(\ell^\beta n) = x_{\phi((m)_k)} \) for almost all \(n \in E \).

- \(f(k^{\alpha} \ell^\beta n + m) = g_{\psi((m)_\ell)}(k^{\alpha} n) = y_{\psi((m)_\ell)} \) for almost all \(n \in E \).

- Since \(\bar{d}(E) > 0 \), there is at least one \(n \in \mathbb{N} \) such that

\[
x_{\phi((m)_k)} = f(k^{\alpha} \ell^\beta n + m) = y_{\psi((m)_\ell)}.
\]
Proof of asymptotic Cobham’s theorem

Lemma

Let \(\alpha, \beta \in \mathbb{N} \), \(\vec{x} \in \Omega^d \), \(\vec{y} \in \Omega^e \) and \(E := \left\{ n \in \mathbb{N} : f(\ell^\beta n) = \vec{x}, g(k^\alpha n) = \vec{y} \right\} \). Suppose that \(\bar{d}(E) > 0 \). Then \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) for all \(0 \leq m < \min(k^\alpha, \ell^\beta) \).

Proof of Lemma:

- \(f(k^\alpha \ell^\beta n + m) = f_{\phi((m)_k)}(\ell^\beta n) = x_{\phi((m)_k)} \) for almost all \(n \in E \).

- \(f(k^\alpha \ell^\beta n + m) = g_{\psi((m)_\ell)}(k^\alpha n) = y_{\psi((m)_\ell)} \) for almost all \(n \in E \).

- Since \(\bar{d}(E) > 0 \), there is at least one \(n \in \mathbb{N} \) such that

\[
x_{\phi((m)_k)} = f(k^\alpha \ell^\beta n + m) = y_{\psi((m)_\ell)}.
\]
Proof of asymptotic Cobham’s theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}$, $\vec{x} \in \Omega^d$, $\vec{y} \in \Omega^e$ and $E := \{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \}$. Suppose that $\bar{d}(E) > 0$. Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \leq m < \min(k^\alpha, \ell^\beta)$.

Proof of Lemma:

- $f(k^\alpha \ell^\beta n + m) = f_{\phi((m)_k)}(\ell^\beta n) = x_{\phi((m)_k)}$ for almost all $n \in E$.

- $f(k^\alpha \ell^\beta n + m) = g_{\psi((m)_\ell)}(k^\alpha n) = y_{\psi((m)_\ell)}$ for almost all $n \in E$.

- Since $\bar{d}(E) > 0$, there is at least one $n \in \mathbb{N}$ such that $x_{\phi((m)_k)} = f(k^\alpha \ell^\beta n + m) = y_{\psi((m)_\ell)}$.

21 / 32
Proof of asymptotic Cobham’s theorem

Lemma

Let \(\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^d, \vec{y} \in \Omega^e \) and \(E := \{ n \in \mathbb{N} : f(\ell^\beta n) = \vec{x}, g(k^\alpha n) = \vec{y}\} \). Suppose that \(\bar{d}(E) > 0 \). Then \(x_\phi((m)_k) = y_\psi((m)_\ell) \) for all \(0 \leq m < \min(k^\alpha, \ell^\beta) \).

Proof of Lemma:

- \(f(k^\alpha \ell^\beta n + m) = f_\phi((m)_k)(\ell^\beta n) = x_\phi((m)_k) \) for almost all \(n \in E \).

- \(f(k^\alpha \ell^\beta n + m) = g_\psi((m)_\ell)(k^\alpha n) = y_\psi((m)_\ell) \) for almost all \(n \in E \).

- Since \(\bar{d}(E) > 0 \), there is at least one \(n \in \mathbb{N} \) such that

\[
x_\phi((m)_k) = f(k^\alpha \ell^\beta n + m) = y_\psi((m)_\ell).
\]
Proof of asymptotic Cobham’s theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}$, $\vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$\bar{d} \left(\left\{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \right\} \right) > 0. \quad (\ast)$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \leq m < \min(k^\alpha, \ell^\beta)$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (\ast) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} “good”.

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ-automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ-automatic.
- By Cobham’s theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi((m)_k)}$ is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}$, $\vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

\[\bar{d}\left(\{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \} \right) > 0. \]

(*)

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \leq m < \min(k^\alpha, \ell^\beta)$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that (*) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} “good”.

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ-automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ-automatic.
- By Cobham’s theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi((m)_k)}$ is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}$, $\vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$d \left(\left\{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \right\} \right) > 0.$$ (\ast)

Then $x_{(m)_k} = y_{(m)_\ell}$ for all $0 \leq m < \min(k^\alpha, \ell^\beta)$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{(m)_k}$ is eventually periodic, provided that (\ast) holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} “good”.

- Directly by definition, $x_{(m)_k}$ is k-automatic and $y_{(m)_\ell}$ is ℓ-automatic.
- By Lemma, $x_{(m)_k} = y_{(m)_\ell}$ is k- and ℓ-automatic.
- By Cobham’s theorem, $x_{(m)_k} = y_{(m)_\ell}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{(m)_k}$ is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Lemma

Let \(\alpha, \beta \in \mathbb{N} \), \(\vec{x} \in \Omega^d \) and \(\vec{y} \in \Omega^e \). Suppose that

\[
\bar{d} \left(\left\{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \right\} \right) > 0.
\]

Then \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) for all \(0 \leq m < \min(k^\alpha, \ell^\beta) \).

Corollary

Let \(\vec{x} \in \Omega^d \). The sequence \(x_{\phi((m)_k)} \) is eventually periodic, provided that (*) holds for arbitrarily large \(\alpha, \beta \in \mathbb{N} \) for some \(\vec{y} \in \Omega^e \). Call such \(\vec{x} \) “good”.

- Directly by definition, \(x_{\phi((m)_k)} \) is \(k \)-automatic and \(y_{\psi((m)_\ell)} \) is \(\ell \)-automatic.
- By Lemma, \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) is \(k \)- and \(\ell \)-automatic.
- By Cobham’s theorem, \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) is eventually periodic.

Let \(q \) be the least common multiple of periods from Corollary above. For ease of notation assume \(x_{\phi((m)_k)} \) is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Lemma

Let \(\alpha, \beta \in \mathbb{N}, \vec{x} \in \Omega^d \) and \(\vec{y} \in \Omega^e \). Suppose that

\[
\bar{d} \left(\left\{ n \in \mathbb{N} : f(\ell^\beta n) = \vec{x}, \ g(k^\alpha n) = \vec{y} \right\} \right) > 0.
\]

(\ast)

Then \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) for all \(0 \leq m < \min(k^\alpha, \ell^\beta) \).

Corollary

Let \(\vec{x} \in \Omega^d \). The sequence \(x_{\phi((m)_k)} \) is eventually periodic, provided that (\ast) holds for arbitrarily large \(\alpha, \beta \in \mathbb{N} \) for some \(\vec{y} \in \Omega^e \). Call such \(\vec{x} \) “good”.

- Directly by definition, \(x_{\phi((m)_k)} \) is \(k \)-automatic and \(y_{\psi((m)_\ell)} \) is \(\ell \)-automatic.
- By Lemma, \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) is \(k \)- and \(\ell \)-automatic.
- By Cobham’s theorem, \(x_{\phi((m)_k)} = y_{\psi((m)_\ell)} \) is eventually periodic.

Let \(q \) be the least common multiple of periods from Corollary above. For ease of notation assume \(x_{\phi((m)_k)} \) is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Lemma

Let $\alpha, \beta \in \mathbb{N}$, $\vec{x} \in \Omega^d$ and $\vec{y} \in \Omega^e$. Suppose that

$$d \left(\left\{ n \in \mathbb{N} : \vec{f}(\ell^\beta n) = \vec{x}, \vec{g}(k^\alpha n) = \vec{y} \right\} \right) > 0. \quad (*)$$

Then $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ for all $0 \leq m < \min(k^\alpha, \ell^\beta)$.

Corollary

Let $\vec{x} \in \Omega^d$. The sequence $x_{\phi((m)_k)}$ is eventually periodic, provided that $(*)$ holds for arbitrarily large $\alpha, \beta \in \mathbb{N}$ for some $\vec{y} \in \Omega^e$. Call such \vec{x} “good”.

- Directly by definition, $x_{\phi((m)_k)}$ is k-automatic and $y_{\psi((m)_\ell)}$ is ℓ-automatic.
- By Lemma, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is k- and ℓ-automatic.
- By Cobham’s theorem, $x_{\phi((m)_k)} = y_{\psi((m)_\ell)}$ is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of notation assume $x_{\phi((m)_k)}$ is genuinely periodic.
Proof of asymptotic Cobham’s theorem

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each “good” $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n + q) = f(n),$$

provided that there exists a decomposition $n = k^\alpha n' + m$ where $m < k^\alpha - q$ and $\vec{x} := \vec{f}(n')$ is “good”.

Proof:

$$f(k^\alpha n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^\alpha n' + m).$$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^\alpha n' + m$ where $n', m, \alpha \in \mathbb{N}, m < k^\alpha - q$, $\vec{f}(n')$ is “good”.

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

The sequence $f(n)$ is asymptotically invariant under shift by q, QED.
Proof of asymptotic Cobham’s theorem

Corollary

The sequence $x_{\phi((m)_k)}$ has period q for each “good” $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n + q) = f(n),$$

provided that there exists a decomposition $n = k^\alpha n' + m$ where $m < k^\alpha - q$ and $\vec{x} := \vec{f}(n')$ is “good”.

Proof: $f(k^\alpha n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^\alpha n' + m)$.

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^\alpha n' + m$ where $n', m, \alpha \in \mathbb{N}$, $m < k^\alpha - q$, $\vec{f}(n')$ is “good”.

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

The sequence $f(n)$ is asymptotically invariant under shift by q, QED.
Proof of asymptotic Cobham’s theorem

Corollary

The sequence \(x_{\phi((m)_k)} \) has period \(q \) for each “good” \(\vec{x} \in \Omega^d \).

Lemma

Let \(n \in \mathbb{N} \). Then

\[f(n + q) = f(n), \]

provided that there exists a decomposition \(n = k^\alpha n' + m \) where \(m < k^\alpha - q \) and \(\vec{x} := \vec{f}(n') \) is “good”.

Proof: \(f(k^\alpha n' + m + q) = x_{\phi((m+q)_k)} = x_{\phi((m)_k)} = f(k^\alpha n' + m) \).

Lemma

For asymptotically almost all \(n \), there exists a decomposition \(n = k^\alpha n' + m \) where \(n', m, \alpha \in \mathbb{N}, m < k^\alpha - q \), \(\vec{f}(n') \) is “good”.

Proof idea: For each \(\alpha < \log_k n \), there is a positive chance to find the decomposition.

Corollary

The sequence \(f(n) \) is asymptotically invariant under shift by \(q \), QED.
Proof of asymptotic Cobham’s theorem

Corollary

The sequence $x_{\phi((m)_{k})}$ has period q for each “good” $\vec{x} \in \Omega^d$.

Lemma

Let $n \in \mathbb{N}$. Then

$$f(n + q) = f(n),$$

provided that there exists a decomposition $n = k^\alpha n' + m$ where $m < k^\alpha - q$ and $\vec{x} := \vec{f}(n')$ is “good”.

Proof:

$$f(k^\alpha n' + m + q) = x_{\phi((m+q)_{k})} = x_{\phi((m)_{k})} = f(k^\alpha n' + m).$$

Lemma

For asymptotically almost all n, there exists a decomposition $n = k^\alpha n' + m$ where $n', m, \alpha \in \mathbb{N}$, $m < k^\alpha - q$, $\vec{f}(n')$ is “good”.

Proof idea: For each $\alpha < \log_k n$, there is a positive chance to find the decomposition.

Corollary

The sequence $f(n)$ is asymptotically invariant under shift by q, QED.
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \to \{0, 1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

- Let n_0 be the constant from the Lemma applied to the k-automatic sequence $g(n) = \begin{cases} 1 & \text{if } f(n + 1) \neq f(n), \\ 0 & \text{if } f(n + 1) = f(n). \end{cases}$
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- \(k, \ell \geq 2 \) are multiplicatively independent integers;
- \(f : \mathbb{N} \to \Omega \) is \(k \)-automatic and asymptotically \(\ell \)-automatic;
- By previous theorem, \(f \) is asymptotically invariant under shift by some \(q \geq 1 \);
- To simplify, assume that \(q = 1 \).

Lemma

Let \(g : \mathbb{N} \to \{0, 1\} \) be a \(k \)-automatic sequence with \(g(n) \simeq 0 \). Then there is \(n_0 \in \mathbb{N} \) with

\[
g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.
\]

Proof idea: Pick an automaton computing \(g \), reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick \(v \in \Sigma_k^* \) such that \(\delta(s_0, v) \) lies in a strongly connected component, and put \(n_0 = [v]_k \).

- Let \(n_0 \) be the constant from the Lemma applied to the \(k \)-automatic sequence

\[
g(n) = \begin{cases} 1 & \text{if } f(n + 1) \neq f(n), \\ 0 & \text{if } f(n + 1) = f(n). \end{cases}
\]
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \rightarrow \{0, 1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

- Let n_0 be the constant from the Lemma applied to the k-automatic sequence

$$g(n) = \begin{cases} 1 & \text{if } f(n+1) \neq f(n), \\ 0 & \text{if } f(n+1) = f(n). \end{cases}$$
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \to \{0, 1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

Let n_0 be the constant from the Lemma applied to the k-automatic sequence

$$g(n) = \begin{cases}
1 & \text{if } f(n + 1) \neq f(n), \\
0 & \text{if } f(n + 1) = f(n).
\end{cases}$$
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \to \{0, 1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

Let n_0 be the constant from the Lemma applied to the k-automatic sequence

$$g(n) = \begin{cases} 1 & \text{if } f(n + 1) \neq f(n), \\ 0 & \text{if } f(n + 1) = f(n). \end{cases}$$
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \to \{0, 1\}$ be a k-automatic sequence with $g(n) \approx 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^{\alpha}n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^{\alpha}.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

- Let n_0 be the constant from the Lemma applied to the k-automatic sequence

$$g(n) = \begin{cases} 1 & \text{if } f(n + 1) \neq f(n), \\ 0 & \text{if } f(n + 1) = f(n). \end{cases}$$
Proof of “mixed” Cobham’s theorem

Assumptions and notation:

- $k, \ell \geq 2$ are multiplicatively independent integers;
- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- By previous theorem, f is asymptotically invariant under shift by some $q \geq 1$;
- To simplify, assume that $q = 1$.

Lemma

Let $g : \mathbb{N} \to \{0, 1\}$ be a k-automatic sequence with $g(n) \simeq 0$. Then there is $n_0 \in \mathbb{N}$ with

$$g(k^\alpha n_0 + m) = 0 \quad \text{for all } \alpha \in \mathbb{N}, \ 0 \leq m < k^\alpha.$$

Proof idea: Pick an automaton computing g, reading input from the most significant digit. The output function is 0 on each strongly connected component. Pick $v \in \Sigma_k^*$ such that $\delta(s_0, v)$ lies in a strongly connected component, and put $n_0 = [v]_k$.

- Let n_0 be the constant from the Lemma applied to the k-automatic sequence

$$g(n) = \begin{cases}
1 & \text{if } f(n+1) \neq f(n), \\
0 & \text{if } f(n+1) = f(n).
\end{cases}$$
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^\alpha n_0, k^\alpha (n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha (n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.

- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f : \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^\alpha n_0, k^\alpha (n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha (n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.

- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f : \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^\alpha n_0, k^\alpha(n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that
 \[\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),\]
 where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.
- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- \(f : \mathbb{N} \rightarrow \Omega \) is \(k \)-automatic and asymptotically \(\ell \)-automatic;
- \(f \) is constant on each interval \([k^\alpha n_0, k^\alpha (n_0 + 1))\).

Fact: The sequence \(f(k^\alpha n_0) \) is eventually periodic with respect to \(\alpha \).

- To simplify: assume that \(f(k^\alpha n_0) =: c \) is constant.
- Thus \(f(n) = c \) for \(n \in [k^\alpha n_0, k^\alpha (n_0 + 1)) \) and \(\alpha \in \mathbb{N} \).
- In other words, \(f(n) = c \) for all \(n \) such that
 \[\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta), \]

where \(\mu_0 := \{\log_k(n_0)\} \) and \(\delta := \log_k(1 + 1/n_0) \).
- Let us say that an interval \(I \subset \mathbb{R}/\mathbb{Z} \) is “nice” if \(f(n) = c \) for almost all \(n \) with \(\{\log_k(n)\} \in I \). Thus, \([\mu_0, \mu_0 + \delta) \) is “nice”.

Fact: There exist \(\beta, \gamma \in \mathbb{N} \) such that \(f(\ell^\beta n) \simeq f(\ell^\gamma n) \).

- To simplify: assume that \(f(\ell n) \simeq f(n) \).
- Note that \(\log_k(\ell^i n) = \log_k(n) + i\theta \), where \(\theta := \log_k(\ell) \) is irrational.
- Thus, for each \(i \in \mathbb{N} \), the interval \([\mu_i, \mu_i + \delta) \) is “nice”, where \(\mu_i := \mu_0 - i\theta \mod 1 \).

End of proof: Cover \(\mathbb{R}/\mathbb{Z} \) with a finite union of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:
• $f : \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
• f is constant on each interval $[k^\alpha n_0, k^\alpha (n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.
• To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
• Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha (n_0 + 1))$ and $\alpha \in \mathbb{N}$.
• In other words, $f(n) = c$ for all n such that

$$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$

where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.
• Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.
• To simplify: assume that $f(\ell n) \simeq f(n)$.
• Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
• Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:
- \(f : \mathbb{N} \to \Omega \) is \(k \)-automatic and asymptotically \(\ell \)-automatic;
- \(f \) is constant on each interval \([k^\alpha n_0, k^\alpha (n_0 + 1)]\).

Fact: The sequence \(f(k^\alpha n_0) \) is eventually periodic with respect to \(\alpha \).
- To simplify: assume that \(f(k^\alpha n_0) =: c \) is constant.
- Thus \(f(n) = c \) for \(n \in [k^\alpha n_0, k^\alpha (n_0 + 1)] \) and \(\alpha \in \mathbb{N} \).
- In other words, \(f(n) = c \) for all \(n \) such that
 \[
 \{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),
 \]
 where \(\mu_0 := \{\log_k(n_0)\} \) and \(\delta := \log_k(1 + 1/n_0) \).
- Let us say that an interval \(I \subset \mathbb{R}/\mathbb{Z} \) is “nice” if \(f(n) = c \) for almost all \(n \) with \(\{\log_k(n)\} \in I \). Thus, \([\mu_0, \mu_0 + \delta)\) is “nice”.

Fact: There exist \(\beta, \gamma \in \mathbb{N} \) such that \(f(\ell^\beta n) \simeq f(\ell^\gamma n) \).
- To simplify: assume that \(f(\ell n) \simeq f(n) \).
- Note that \(\log_k(\ell^i n) = \log_k(n) + i\theta \), where \(\theta := \log_k(\ell) \) is irrational.
- Thus, for each \(i \in \mathbb{N} \), the interval \([\mu_i, \mu_i + \delta)\) is “nice”, where \(\mu_i := \mu_0 - i\theta \mod 1 \).

End of proof: Cover \(\mathbb{R}/\mathbb{Z} \) with a finite union of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f : \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^\alpha n_0, k^\alpha(n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that
 $$\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),$$
 where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.
- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f : \mathbb{N} \rightarrow \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^\alpha n_0, k^\alpha (n_0 + 1))$.

Fact: The sequence $f(k^\alpha n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^\alpha n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^\alpha n_0, k^\alpha (n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that
 \[
 \{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),
 \]
 where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.
- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \sim f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell^n) \sim f(n)$.
 - Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
 - Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- $f: \mathbb{N} \to \Omega$ is k-automatic and asymptotically ℓ-automatic;
- f is constant on each interval $[k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$.

Fact: The sequence $f(k^{\alpha}n_0)$ is eventually periodic with respect to α.

- To simplify: assume that $f(k^{\alpha}n_0) =: c$ is constant.
- Thus $f(n) = c$ for $n \in [k^{\alpha}n_0, k^{\alpha}(n_0 + 1))$ and $\alpha \in \mathbb{N}$.
- In other words, $f(n) = c$ for all n such that
 \[
 \{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),
 \]
 where $\mu_0 := \{\log_k(n_0)\}$ and $\delta := \log_k(1 + 1/n_0)$.
- Let us say that an interval $I \subset \mathbb{R}/\mathbb{Z}$ is “nice” if $f(n) = c$ for almost all n with $\{\log_k(n)\} \in I$. Thus, $[\mu_0, \mu_0 + \delta)$ is “nice”.

Fact: There exist $\beta, \gamma \in \mathbb{N}$ such that $f(\ell^\beta n) \simeq f(\ell^\gamma n)$.

- To simplify: assume that $f(\ell n) \simeq f(n)$.
- Note that $\log_k(\ell^i n) = \log_k(n) + i\theta$, where $\theta := \log_k(\ell)$ is irrational.
- Thus, for each $i \in \mathbb{N}$, the interval $[\mu_i, \mu_i + \delta)$ is “nice”, where $\mu_i := \mu_0 - i\theta \mod 1$.

End of proof: Cover \mathbb{R}/\mathbb{Z} with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:
- \(f : \mathbb{N} \rightarrow \Omega \) is \(k \)-automatic and asymptotically \(\ell \)-automatic;
- \(f \) is constant on each interval \([k^\alpha n_0, k^\alpha (n_0 + 1))\).

Fact: The sequence \(f(k^\alpha n_0) \) is eventually periodic with respect to \(\alpha \).
- To simplify: assume that \(f(k^\alpha n_0) =: c \) is constant.
- Thus \(f(n) = c \) for \(n \in [k^\alpha n_0, k^\alpha (n_0 + 1)) \) and \(\alpha \in \mathbb{N} \).
- In other words, \(f(n) = c \) for all \(n \) such that
 \[
 \{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),
 \]
 where \(\mu_0 := \{\log_k(n_0)\} \) and \(\delta := \log_k(1 + 1/n_0) \).
- Let us say that an interval \(I \subset \mathbb{R}/\mathbb{Z} \) is “nice” if \(f(n) = c \) for almost all \(n \) with \(\{\log_k(n)\} \in I \). Thus, \([\mu_0, \mu_0 + \delta)\) is “nice”.

Fact: There exist \(\beta, \gamma \in \mathbb{N} \) such that \(f(\ell^\beta n) \simeq f(\ell^\gamma n) \).
- To simplify: assume that \(f(\ell n) \simeq f(n) \).
- Note that \(\log_k(\ell^i n) = \log_k(n) + i\theta \), where \(\theta := \log_k(\ell) \) is irrational.
- Thus, for each \(i \in \mathbb{N} \), the interval \([\mu_i, \mu_i + \delta)\) is “nice”, where \(\mu_i := \mu_0 - i\theta \mod 1 \).

End of proof: Cover \(\mathbb{R}/\mathbb{Z} \) with a finite union of of “nice” intervals.
Proof of “mixed” Cobham’s theorem

Reminder about assumptions and notation:

- \(f : \mathbb{N} \to \Omega \) is \(k \)-automatic and asymptotically \(\ell \)-automatic;
- \(f \) is constant on each interval \([k^\alpha n_0, k^\alpha (n_0 + 1))\).

Fact: The sequence \(f(k^\alpha n_0) \) is eventually periodic with respect to \(\alpha \).

- To simplify: assume that \(f(k^\alpha n_0) =: c \) is constant.
- Thus \(f(n) = c \) for \(n \in [k^\alpha n_0, k^\alpha (n_0 + 1)) \) and \(\alpha \in \mathbb{N} \).
- In other words, \(f(n) = c \) for all \(n \) such that

\[
\{\log_k(n)\} \in [\mu_0, \mu_0 + \delta),
\]

where \(\mu_0 := \{\log_k(n_0)\} \) and \(\delta := \log_k(1 + 1/n_0) \).

- Let us say that an interval \(I \subset \mathbb{R}/\mathbb{Z} \) is “nice” if \(f(n) = c \) for almost all \(n \) with \(\{\log_k(n)\} \in I \). Thus, \([\mu_0, \mu_0 + \delta)\) is “nice”.

Fact: There exist \(\beta, \gamma \in \mathbb{N} \) such that \(f(\ell^\beta n) \simeq f(\ell^\gamma n) \).

- To simplify: assume that \(f(\ell n) \simeq f(n) \).
- Note that \(\log_k(\ell^i n) = \log_k(n) + i\theta \), where \(\theta := \log_k(\ell) \) is irrational.
- Thus, for each \(i \in \mathbb{N} \), the interval \([\mu_i, \mu_i + \delta)\) is “nice”, where \(\mu_i := \mu_0 - i\theta \bmod 1 \).

End of proof: Cover \(\mathbb{R}/\mathbb{Z} \) with a finite union of “nice” intervals.
Frequencies

Definition

Let \(f : \mathbb{N} \to \Omega, \omega \in \Omega \). The \((\text{asymptotic} / \text{logarithmic})\) frequency of \(\omega \) if \(f \) is:

\[
\text{freq}(f; \omega) := \lim_{N \to \infty} \frac{1}{N} \cdot \# \{ n < N : f(n) = \omega \},
\]

\[
\text{freq}_{\log}(f; \omega) := \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\omega}(n)}{n + 1}.
\]

Proposition (Frequencies of symbols in automatic sequences)

Let \(f : \mathbb{N} \to \Omega \) be automatic and \(\omega \in \Omega \). Then

- the logarithmic frequency \(\text{freq}_{\log}(f; \omega) \) exists;
- if the frequency \(\text{freq}(f; \omega) \) exists then it is rational.

The asymptotic analogue is utterly false.
Frequencies

Definition

Let $f : \mathbb{N} \rightarrow \Omega$, $\omega \in \Omega$. The *(asymptotic / logarithmic) frequency* of ω if f is:

$$
\text{freq}(f; \omega) := \lim_{N \to \infty} \frac{1}{N} \cdot \# \{ n < N : f(n) = \omega \},
$$

$$
\text{freq}_{\log}(f; \omega) := \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1_{\{\omega\}}(n)}{n + 1}.
$$

Proposition (Frequencies of symbols in automatic sequences)

Let $f : \mathbb{N} \rightarrow \Omega$ be automatic and $\omega \in \Omega$. Then

- the logarithmic frequency $\text{freq}_{\log}(f; \omega)$ exists;
- if the frequency $\text{freq}(f; \omega)$ exists then it is rational.

The asymptotic analogue is utterly false.
Frequencies

Definition

Let \(f : \mathbb{N} \to \Omega, \omega \in \Omega \). The \((\text{asymptotic} / \text{logarithmic})\) frequency of \(\omega \) if \(f \) is:

\[
\text{freq}(f; \omega) := \lim_{N \to \infty} \frac{1}{N} \cdot \# \{ n < N : f(n) = \omega \},
\]

\[
\text{freq}_{\log}(f; \omega) := \lim_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{1\{\omega\}(n)}{n + 1}.
\]

Proposition (Frequencies of symbols in automatic sequences)

Let \(f : \mathbb{N} \to \Omega \) be automatic and \(\omega \in \Omega \). Then

- the logarithmic frequency \(\text{freq}_{\log}(f; \omega) \) exists;
- if the frequency \(\text{freq}(f; \omega) \) exists then it is rational.

The asymptotic analogue is utterly false.
Frequencies

Proposition

There exists an asymptotically 2-automatic sequence $f : \mathbb{N} \to \{0, 1\}$ such that

$$0 = \liminf_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} < \limsup_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} = 1.$$

Proposition

For each $\theta \in [0, 1]$ there exists an asymptotically 2-automatic sequence $f : \mathbb{N} \to \{0, 1\}$ such that $\text{freq}(f; 1) = \theta$.
Frequencies

Proposition
There exists an asymptotically 2-automatic sequence $f: \mathbb{N} \to \{0, 1\}$ such that

$$0 = \liminf_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} < \limsup_{N \to \infty} \frac{1}{\log N} \sum_{n=0}^{N-1} \frac{f(n)}{n+1} = 1.$$

Proposition
For each $\theta \in [0, 1]$ there exists an asymptotically 2-automatic sequence $f: \mathbb{N} \to \{0, 1\}$ such that $\text{freq}(f; 1) = \theta$.
Frequencies — Proof ideas

- We can write the binary expansion of any \(n \in \mathbb{N} \) as
 \[
 (n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},
 \]
 where \(r(n) \in \mathbb{N} \), each \(u_i^{(n)} \) ends with 1, \(|u_i^{(n)}|_1 = i \), and \(|v^{(n)}|_1 \leq r(n) \).

- We always have \(r(2n) = r(n) \), and the expansion of \(2n \) takes the form
 \[
 (2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}0).
 \]

- We usually have \(r(2n + 1) = r(n) \), and the expansion of \(2n + 1 \) takes the form
 \[
 (2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}1).
 \]
 This is the case unless \(|v^{(n)}|_1 = r(n) \).

- Thus, for any \(F : \Sigma_2^* \rightarrow \Omega \), the sequence \(f : \mathbb{N} \rightarrow \Omega \) given by
 \[
 f(n) = F(u_{r(n)}^{(n)})
 \]
 is asymptotically 2-automatic.
Frequencies — Proof ideas

- We can write the binary expansion of any \(n \in \mathbb{N} \) as

\[
(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},
\]

where \(r(n) \in \mathbb{N} \), each \(u_i^{(n)} \) ends with 1, \(|u_i^{(n)}|_1 = i \), and \(|v^{(n)}|_1 \leq r(n) \).

- We always have \(r(2n) = r(n) \), and the expansion of \(2n \) takes the form

\[
(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 0).
\]

- We usually have \(r(2n + 1) = r(n) \), and the expansion of \(2n + 1 \) takes the form

\[
(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)} 1).
\]

This is the case unless \(|v^{(n)}|_1 = r(n) \).

- Thus, for any \(F : \Sigma^*_2 \rightarrow \Omega \), the sequence \(f : \mathbb{N} \rightarrow \Omega \) given by

\[
f(n) = F(u_{r(n)}^{(n)})
\]

is asymptotically 2-automatic.
Frequencies — Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as
 \[(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)} ,\]
 where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \leq r(n)$.

- We always have $r(2n) = r(n)$, and the expansion of $2n$ takes the form
 \[(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}0) .\]

- We usually have $r(2n + 1) = r(n)$, and the expansion of $2n + 1$ takes the form
 \[(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}1) .\]
 This is the case unless $|v^{(n)}|_1 = r(n)$.

- Thus, for any $F : \Sigma_2^* 1 \rightarrow \Omega$, the sequence $f : \mathbb{N} \rightarrow \Omega$ given by
 \[f(n) = F(u_{r(n)}^{(n)})\]
 is asymptotically 2-automatic.
Frequencies — Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as
 $$ (n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)}, $$
 where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \leq r(n)$.

- We always have $r(2n) = r(n)$, and the expansion of $2n$ takes the form
 $$ (2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}0). $$

- We *usually* have $r(2n + 1) = r(n)$, and the expansion of $2n + 1$ takes the form
 $$ (2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}1). $$
 This is the case unless $|v^{(n)}|_1 = r(n)$.

- Thus, for any $F : \Sigma^* \rightarrow \Omega$, the sequence $f : \mathbb{N} \rightarrow \Omega$ given by
 $$ f(n) = F(u_{r(n)}^{(n)}) $$
 is asymptotically 2-automatic.
Frequencies — Proof ideas

- We can write the binary expansion of any $n \in \mathbb{N}$ as
 \[(n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} v^{(n)},\]
 where $r(n) \in \mathbb{N}$, each $u_i^{(n)}$ ends with 1, $|u_i^{(n)}|_1 = i$, and $|v^{(n)}|_1 \leq r(n)$.
- We always have $r(2n) = r(n)$, and the expansion of $2n$ takes the form
 \[(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}0).\]
- We usually have $r(2n + 1) = r(n)$, and the expansion of $2n + 1$ takes the form
 \[(2n)_2 = u_1^{(n)} u_2^{(n)} \cdots u_{r(n)}^{(n)} (v^{(n)}1).\]
 This is the case unless $|v^{(n)}|_1 = r(n)$.
- Thus, for any $F : \Sigma_2^* 1 \to \Omega$, the sequence $f : \mathbb{N} \to \Omega$ given by
 \[f(n) = F(u_{r(n)}^{(n)})\]
 is asymptotically 2-automatic.
Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f : \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- *Cobham’s theorem:* If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.

- *Primes and squares:* It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\deg p = 1$.

- *Generalised polynomials:* Allouche and Shallit showed that sequences of the form $(\lfloor \alpha n + \beta \rfloor \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic.
 Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \cdot \rfloor$.

- A sequence $f : \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if $f(nm) = f(n)f(m)$ for each $n, m \in \mathbb{N}$ with $\gcd(n, m) = 1$. A complete classification was obtained in by K.–Lemańczyk–Müllner.
Classification problems

General questions: Fix the base \(k \geq 2 \).
- Given a sequence \(f : \mathbb{N} \rightarrow \Omega \), decide if it is \(k \)-automatic.
- Given a class of sequences \(\mathcal{F} \), find all \(f \in \mathcal{F} \) which are \(k \)-automatic.

Definition
A set \(E \subset \mathbb{N} \) is \(k \)-automatic if \(1_E \) is \(k \)-automatic.
- Given a class \(\mathcal{S} \) of subsets of \(\mathbb{N} \), find all \(E \in \mathcal{S} \) that are \(k \)-automatic.

Examples:
- *Cobham’s theorem:* If \(k, \ell \in \mathbb{N} \) are multiplicatively independent, then an \(\ell \)-automatic sequence is \(k \)-automatic if and only if it is eventually periodic.
- *Primes and squares:* It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set \(\{ p(n) : n \in \mathbb{N} \} \) of values of a polynomial \(p \) is automatic if and only if \(\deg p = 1 \).
- *Generalised polynomials:* Allouche and Shallit showed that sequences of the form \(([\alpha n + \beta] \mod q)^\infty_{n=0} \) are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using \(+, \times \) and \([\cdot] \).
- A sequence \(f : \mathbb{N} \rightarrow \mathbb{C} \) is *multiplicative* if \(f(nm) = f(n)f(m) \) for each \(n, m \in \mathbb{N} \) with \(\gcd(n, m) = 1 \). A complete classification was obtained in by K.–Lemańczyk–Müllner.
Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f: \mathbb{N} \rightarrow \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- **Cobham’s theorem:** If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.

- **Primes and squares:** It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\deg p = 1$.

- **Generalised polynomials:** Allouche and Shallit showed that sequences of the form $([\alpha n + \beta] \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+,$ \times and $\lfloor \cdot \rfloor$.

- A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative if $f(nm) = f(n)f(m)$ for each $n, m \in \mathbb{N}$ with $\gcd(n, m) = 1$. A complete classification was obtained in by K.–Lemańczyk–Müllner.
Classification problems

General questions: Fix the base $k \geq 2$.

- Given a sequence $f : \mathbb{N} \to \Omega$, decide if it is k-automatic.
- Given a class of sequences \mathcal{F}, find all $f \in \mathcal{F}$ which are k-automatic.

Definition

A set $E \subset \mathbb{N}$ is k-automatic if 1_E is k-automatic.

- Given a class \mathcal{S} of subsets of \mathbb{N}, find all $E \in \mathcal{S}$ that are k-automatic.

Examples:

- **Cobham’s theorem:** If $k, \ell \in \mathbb{N}$ are multiplicatively independent, then an ℓ-automatic sequence is k-automatic if and only if it is eventually periodic.

- **Primes and squares:** It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set $\{p(n) : n \in \mathbb{N}\}$ of values of a polynomial p is automatic if and only if $\deg p = 1$.

- **Generalised polynomials:** Allouche and Shallit showed that sequences of the form $([\alpha n + \beta] \mod q)_{n=0}^{\infty}$ are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using $+, \times$ and $\lfloor \cdot \rfloor$.

- A sequence $f : \mathbb{N} \to \mathbb{C}$ is multiplicative if $f(nm) = f(n)f(m)$ for each $n, m \in \mathbb{N}$ with $\gcd(n, m) = 1$. A complete classification was obtained in by K.–Lemańczyk–Müllner.
Classification problems

General questions: Fix the base \(k \geq 2 \).

- Given a sequence \(f : \mathbb{N} \to \Omega \), decide if it is \(k \)-automatic.
- Given a class of sequences \(\mathcal{F} \), find all \(f \in \mathcal{F} \) which are \(k \)-automatic.

Definition

A set \(E \subset \mathbb{N} \) is \(k \)-automatic if \(1_E \) is \(k \)-automatic.

- Given a class \(\mathcal{S} \) of subsets of \(\mathbb{N} \), find all \(E \in \mathcal{S} \) that are \(k \)-automatic.

Examples:

- **Cobham’s theorem:** If \(k, \ell \in \mathbb{N} \) are multiplicatively independent, then an \(\ell \)-automatic sequence is \(k \)-automatic if and only if it is eventually periodic.

- **Primes and squares:** It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set \(\{ p(n) : n \in \mathbb{N} \} \) of values of a polynomial \(p \) is automatic if and only if \(\deg p = 1 \).

- **Generalised polynomials:** Allouche and Shallit showed that sequences of the form \(([\alpha n + \beta] \mod q)_{n=0}^\infty \) are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using \(+, \times \) and \(\lfloor \cdot \rfloor \).

- A sequence \(f : \mathbb{N} \to \mathbb{C} \) is *multiplicative* if \(f(nm) = f(n)f(m) \) for each \(n, m \in \mathbb{N} \) with \(\gcd(n, m) = 1 \). A complete classification was obtained in by K.–Lemańczyk–Müllner.
Classification problems

General questions: Fix the base \(k \geq 2 \).

- Given a sequence \(f : \mathbb{N} \to \Omega \), decide if it is \(k \)-automatic.
- Given a class of sequences \(\mathcal{F} \), find all \(f \in \mathcal{F} \) which are \(k \)-automatic.

Definition

A set \(E \subset \mathbb{N} \) is \(k \)-automatic if \(1_E \) is \(k \)-automatic.

- Given a class \(\mathcal{S} \) of subsets of \(\mathbb{N} \), find all \(E \in \mathcal{S} \) that are \(k \)-automatic.

Examples:

- **Cobham’s theorem:** If \(k, \ell \in \mathbb{N} \) are multiplicatively independent, then an \(\ell \)-automatic sequence is \(k \)-automatic if and only if it is eventually periodic.

- **Primes and squares:** It is a standard exercise that the set of the primes and the set of the squares are not automatic. In fact, the set \(\{ p(n) : n \in \mathbb{N} \} \) of values of a polynomial \(p \) is automatic if and only if \(\deg p = 1 \).

- **Generalised polynomials:** Allouche and Shallit showed that sequences of the form \(([\alpha n + \beta] \mod q)_{n=0}^{\infty} \) are automatic if and only if they are periodic. Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e., expressions built up from polynomials using \(+, \times \) and \([\bullet] \).

- A sequence \(f : \mathbb{N} \to \mathbb{C} \) is **multiplicative** if \(f(nm) = f(n)f(m) \) for each \(n, m \in \mathbb{N} \) with \(\gcd(n, m) = 1 \). A complete classification was obtained in by K.–Lemańczyk–Müllner.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the additive structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(mX \cup m^2 \mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:
- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max \{ \nu : p^{\nu} \mid n \}$ and $\omega = \exp(2\pi i/r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:
- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \text{ mod } r\}$;
- $\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\}$;
- $mX \cup m^2\mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the *additive* structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^\nu | n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(mX \cup m^2\mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max \{ \nu : p^\nu | n \}$ and $\omega = \exp(2\pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- $\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \}$;
- $\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \}$;
- $m X \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the *additive* structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^\nu | n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(m.X \cup m^2 \mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the *additive* structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^\nu | n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\} \);
- \(\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\} \);
- \(mX \cup m^2\mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the \textit{multiplicative} structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the \textit{additive} structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^\nu \mid n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(mX \cup m^2\mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the multiplicative structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the additive structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:
- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max \{\nu : p^{\nu} | n\}$ and $\omega = \exp(2\pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:
- periodic semigroups;
- $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \text{ mod } r\}$;
- $\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\}$;
- $mX \cup m^2 \mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max \{\nu : p^\nu | n\}$ and $\omega = \exp(2\pi i / r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups; $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r\};$
- $\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\};$
- $mX \cup m^2\mathbb{N}$ where $m \in \mathbb{N}$ and $X \subset \mathbb{N}$ is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the *additive* structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^{\nu} | n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \mod r \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(mX \cup m^2\mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \(\mathbb{N} \).
- Automatic sequences are fundamentally connected to the *additive* structure of \(\mathbb{N} \).
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)
The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- \(f(n) = \omega^{\nu_p(n)} \), where \(\nu_p(n) = \max \{ \nu : p^\nu \mid n \} \) and \(\omega = \exp(2\pi i/r) \);
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)
The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- \(\{ n \in \mathbb{N} : \nu_p(n) \equiv 0 \pmod{r} \} \);
- \(\mathbb{N} \setminus \{ p^\alpha : \alpha \in \mathbb{N} \} \);
- \(mX \cup m^2\mathbb{N} \) where \(m \in \mathbb{N} \) and \(X \subset \mathbb{N} \) is any automatic set.
Addition vs. multiplication — heuristics

- Multiplicative sequences are defined in terms of the *multiplicative* structure of \mathbb{N}.
- Automatic sequences are fundamentally connected to the *additive* structure of \mathbb{N}.
- Thus, heuristically, we expect that there should not be any “non-trivial” automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

- Dirichlet characters, and more generally periodic multiplicative sequences;
- $f(n) = \omega^{\nu_p(n)}$, where $\nu_p(n) = \max \{ \nu : p^\nu | n \}$ and $\omega = \exp(2\pi i/r)$;
- eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

- periodic semigroups;
- $\{n \in \mathbb{N} : \nu_p(n) \equiv 0 \text{ mod } r\}$;
- $\mathbb{N} \setminus \{p^\alpha : \alpha \in \mathbb{N}\}$;
- $mX \cup m^2\mathbb{N}$ where $m \in \mathbb{N}$ and $X \subseteq \mathbb{N}$ is any automatic set.
Classification of automatic multiplicative sequences

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$f(n) = h(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}),$$

(†) where $h(0) = 1$ and $g(pn) = 0$ for all n. Additionally, g is multiplicative.

Theorem (K., Lemańczyk, Müllner 2020)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be a non-zero multiplicative sequence.

- If k is a power of a prime p then f is k-automatic iff h and g given by (†) are eventually periodic. (In this case, g must be either periodic or eventually zero.)
- If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.
Classification of automatic multiplicative sequences

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

$$f(n) = h(\nu_p(n)) \cdot g(n/p^{\nu_p(n)}), \quad (\dagger)$$

where $h(0) = 1$ and $g(pn) = 0$ for all n. Additionally, g is multiplicative.

Theorem (K., Lemańczyk, Müllner 2020)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be a non-zero multiplicative sequence.

- *If k is a power of a prime p then f is k-automatic iff h and g given by (\dagger) are eventually periodic. (In this case, g must be either periodic or eventually zero.)*
- *If k has ≥ 2 prime divisors then f is k-automatic iff f is eventually periodic.*

Remark: Conversely, each sequence f of the form described above is both k-automatic and multiplicative.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:
 \[f_\phi(m)(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_\phi(qm)(qn) \]
 \[\simeq f(q)^{-1} f_\phi(qm')(qn) = \cdots = f_\phi(m')(n). \]
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q' r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix \(k \geq 2 \) and let \(f : \mathbb{N} \to \mathbb{C} \) be an asymptotically automatic multiplicative sequence. Then there exists \(\chi : \mathbb{N} \to \mathbb{C} \) that is either a Dirichlet character or identically 0, such that \(f(p^a) = \chi(p^a) \) for all sufficiently large primes \(p \) and all \(\alpha \in \mathbb{N} \).

Proof ideas:

- Key ingredient [Klurman 2017]: If \(f \) is finitely-valued, multiplicative and asymptotically invariant under a shift then \(f \simeq 0 \) or \(f \) is periodic.
- We can use old tricks to assume that \(f \) is completely multiplicative.
- Like earlier, we can find \(f_0, f_1, \ldots, f_{d-1} \) and \(k \)-automatic \(\phi : \Sigma_k^* \to \Sigma_d \) such that
 \[f(k^{|u|n} + [u]_k) \simeq f_{\phi(u)}(n) \] for \(u \in \Sigma_k^* \). To simplify, assume that \(\phi(0u) = \phi(u) \).
- If \(f(q) \neq 0 \) and \(\phi(qm) = \phi(qm') \) then \(\phi(m) = \phi(m') \):
 \[f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \]
 \[\simeq f(q)^{-1} f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n) \].
- For each \(q \in \mathbb{N} \) without small prime factors, there exists \(\hat{q} \in \mathbb{N} \) such that \(\phi(\hat{q}q) = \phi(1) \).
- The last two items imply that if \(\phi(q) = \phi(q') \) and \(\phi(r) = \phi(r') \) then \(\phi(qr) = \phi(q'r') \).
- Define a semigroup operation \(\odot \) on (a subset of) \(\Sigma_d \) by \(\phi(q) \odot \phi(r) = \phi(qr) \).
- Apply classification of automatic multiplicative sequences to conclude that \(\phi \) is periodic (on integers without small prime factors).
- Periodicity of \(\phi \) implies asymptotic periodicity of \(f \).
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix \(k \geq 2 \) *and let* \(f : \mathbb{N} \to \mathbb{C} \) *be an asymptotically automatic multiplicative sequence. Then there exists* \(\chi : \mathbb{N} \to \mathbb{C} \) *that is either a Dirichlet character or identically 0, such that* \(f(p^\alpha) = \chi(p^\alpha) \) *for all sufficiently large primes* \(p \) *and all* \(\alpha \in \mathbb{N} \).

Proof ideas:

- Key ingredient [Klurman 2017]: If \(f \) is finitely-valued, multiplicative and asymptotically invariant under a shift then \(f \simeq 0 \) or \(f \) is periodic.
- We can use old tricks to assume that \(f \) is completely multiplicative.
- Like earlier, we can find \(f_0, f_1, \ldots, f_{d-1} \) and \(k \)-automatic \(\phi : \Sigma_k^* \to \Sigma_d \) such that \(f(k^|u|n + [u]_k) \simeq f_{\phi(u)}(n) \) for \(u \in \Sigma_k^* \). To simplify, assume that \(\phi(0u) = \phi(u) \).
- If \(f(q) \neq 0 \) and \(\phi(qm) = \phi(qm') \) then \(\phi(m) = \phi(m') \):

\[
\begin{align*}
 f_{\phi(m)}(n) &\simeq f(k^in + m) = f(q)^{-1}f(k^iqn +qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn) \\
 &\simeq f(q)^{-1}f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n).
\end{align*}
\]
- For each \(q \in \mathbb{N} \) without small prime factors, there exists \(\hat{q} \in \mathbb{N} \) such that \(\phi(\hat{q}q) = \phi(1) \).
- The last two items imply that if \(\phi(q) = \phi(q') \) and \(\phi(r) = \phi(r') \) then \(\phi(qr) = \phi(q'r') \).
- Define a semigroup operation \(\odot \) on (a subset of) \(\Sigma_d \) by \(\phi(q) \odot \phi(r) = \phi(qr) \).
- Apply classification of automatic multiplicative sequences to conclude that \(\phi \) is periodic (on integers without small prime factors).
- Periodicity of \(\phi \) implies asymptotic periodicity of \(f \).
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^a)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- **Key ingredient [Klurman 2017]:** If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.

- We can use old tricks to assume that f is *completely* multiplicative.

- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma_k^* \rightarrow \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.

- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

$$f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn)$$

$$\simeq f(q)^{-1} f_{\phi(qm')} (qn) = \cdots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.

- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.

- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.

- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).

- Periodicity of ϕ implies asymptotic periodicity of f.

- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix \(k \geq 2 \) and let \(f : \mathbb{N} \rightarrow \mathbb{C} \) be an asymptotically automatic multiplicative sequence. Then there exists \(\chi : \mathbb{N} \rightarrow \mathbb{C} \) that is either a Dirichlet character or identically 0, such that \(f(p^\alpha) = \chi(p^\alpha) \) for all sufficiently large primes \(p \) and all \(\alpha \in \mathbb{N} \).

Proof ideas:

- **Key ingredient** [Klurman 2017]: If \(f \) is finitely-valued, multiplicative and asymptotically invariant under a shift then \(f \simeq 0 \) or \(f \) is periodic.
- We can use old tricks to assume that \(f \) is *completely* multiplicative.
- Like earlier, we can find \(f_0, f_1, \ldots, f_{d-1} \) and \(k \)-automatic \(\phi : \Sigma_k^* \rightarrow \Sigma_d \) such that \(f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n) \) for \(u \in \Sigma_k^* \). To simplify, assume that \(\phi(0u) = \phi(u) \).
- If \(f(q) \neq 0 \) and \(\phi(qm) = \phi(qm') \) then \(\phi(m) = \phi(m') \):

\[
\begin{align*}
f_{\phi(m)}(n) & \simeq f(k^in + m) = f(q)^{-1}f(k^iqn + qm) \simeq f(q)^{-1}f_{\phi(qm)}(qn) \\
& \simeq f(q)^{-1}f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n).
\end{align*}
\]
- For each \(q \in \mathbb{N} \) without small prime factors, there exists \(\hat{q} \in \mathbb{N} \) such that \(\phi(\hat{q}q) = \phi(1) \).
- The last two items imply that if \(\phi(q) = \phi(q') \) and \(\phi(r) = \phi(r') \) then \(\phi(qr) = \phi(q'r') \).
- Define a semigroup operation \(\ominus \) on (a subset of) \(\Sigma_d \) by \(\phi(q) \ominus \phi(r) = \phi(qr) \).
- Apply classification of automatic multiplicative sequences to conclude that \(\phi \) is periodic (on integers without small prime factors).
- Periodicity of \(\phi \) implies asymptotic periodicity of \(f \).
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- **Key ingredient** [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:
 $$f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \simeq f(q)^{-1} f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n).$$
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma^*_k \to \Sigma_d$ such that $f(k^{|u|} n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma^*_k$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

 $$f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \simeq f(q)^{-1} f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \rightarrow \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \rightarrow \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- **Key ingredient [Klurman 2017]:** If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma^*_k \rightarrow \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n)$ for $u \in \Sigma^*_k$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:
 \[
 f_\phi(m)(n) \simeq f(k^in + m) = f(q)^{-1}f(k^iqn +qm) \simeq f(q)^{-1}f_\phi(qm)(qn)
 \]
 \[
 \simeq f(q)^{-1}f_\phi(qm')(qn) = \cdots = f_\phi(m')(n).
 \]
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
 - The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
 - Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
 - Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
 - Periodicity of ϕ implies asymptotic periodicity of f.
 - Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma^*_k \to \Sigma_d$ such that $f(k^{|u|} n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma^*_k$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

 $$f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn +qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \simeq f(q)^{-1} f_{\phi(qm')} (qn) = \cdots = f_{\phi(m')}(n).$$

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \circ on (a subset of) Σ_d by $\phi(q) \circ \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix \(k \geq 2 \) and let \(f : \mathbb{N} \to \mathbb{C} \) be an asymptotically automatic multiplicative sequence. Then there exists \(\chi : \mathbb{N} \to \mathbb{C} \) that is either a Dirichlet character or identically 0, such that \(f(p^\alpha) = \chi(p^\alpha) \) for all sufficiently large primes \(p \) and all \(\alpha \in \mathbb{N} \).

Proof ideas:

- **Key ingredient [Klurman 2017]:** If \(f \) is finitely-valued, multiplicative and asymptotically invariant under a shift then \(f \simeq 0 \) or \(f \) is periodic.
- We can use old tricks to assume that \(f \) is *completely* multiplicative.
- Like earlier, we can find \(f_0, f_1, \ldots, f_{d-1} \) and \(k \)-automatic \(\phi : \Sigma_k^* \to \Sigma_d \) such that \(f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n) \) for \(u \in \Sigma_k^* \). To simplify, assume that \(\phi(0u) = \phi(u) \).
- If \(f(q) \neq 0 \) and \(\phi(qm) = \phi(qm') \) then \(\phi(m) = \phi(m') \):
 \[
 f_\phi(m)(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn + qm) \simeq f(q)^{-1} f_\phi(qm)(qn) \\
 \simeq f(q)^{-1} f_\phi(qm')(qn) = \cdots = f_\phi(m')(n).
 \]
- For each \(q \in \mathbb{N} \) without small prime factors, there exists \(\hat{q} \in \mathbb{N} \) such that \(\phi(\hat{q}q) = \phi(1) \).
- The last two items imply that if \(\phi(q) = \phi(q') \) and \(\phi(r) = \phi(r') \) then \(\phi(qr) = \phi(q'r') \).
- Define a semigroup operation \(\circ \) on (a subset of) \(\Sigma_d \) by \(\phi(q) \circ \phi(r) = \phi(qr) \).
- Apply classification of automatic multiplicative sequences to conclude that \(\phi \) is periodic (on integers without small prime factors).
- Periodicity of \(\phi \) implies asymptotic periodicity of \(f \).
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

 \[
 f_{\phi(m)}(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn + qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \\
 \simeq f(q)^{-1} f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n).
 \]
- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q} q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- **Key ingredient** [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is *completely* multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma^*_k \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_\phi(u)(n)$ for $u \in \Sigma^*_k$. To simplify, assume that $\phi(0u) = \phi(u)$.
- **If** $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

\[
 f_\phi(m)(n) \simeq f(k^i n + m) = f(q)^{-1} f(k^i qn + qm) \simeq f(q)^{-1} f_\phi(qm)(qn)
\]

\[
 \simeq f(q)^{-1} f_\phi(qm')(qn) = \cdots = f_\phi(m')(n).
\]

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \odot on (a subset of) Σ_d by $\phi(q) \odot \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Classification of automatic multiplicative sequences

Theorem (K.)

Fix $k \geq 2$ and let $f : \mathbb{N} \to \mathbb{C}$ be an asymptotically automatic multiplicative sequence. Then there exists $\chi : \mathbb{N} \to \mathbb{C}$ that is either a Dirichlet character or identically 0, such that $f(p^\alpha) = \chi(p^\alpha)$ for all sufficiently large primes p and all $\alpha \in \mathbb{N}$.

Proof ideas:

- Key ingredient [Klurman 2017]: If f is finitely-valued, multiplicative and asymptotically invariant under a shift then $f \simeq 0$ or f is periodic.
- We can use old tricks to assume that f is completely multiplicative.
- Like earlier, we can find $f_0, f_1, \ldots, f_{d-1}$ and k-automatic $\phi : \Sigma_k^* \to \Sigma_d$ such that $f(k^{|u|}n + [u]_k) \simeq f_{\phi(u)}(n)$ for $u \in \Sigma_k^*$. To simplify, assume that $\phi(0u) = \phi(u)$.
- If $f(q) \neq 0$ and $\phi(qm) = \phi(qm')$ then $\phi(m) = \phi(m')$:

 \[f_{\phi(m)}(n) \simeq f(k^n m) = f(q)^{-1} f(k^n qn + qm) \simeq f(q)^{-1} f_{\phi(qm)}(qn) \]

 \[\simeq f(q)^{-1} f_{\phi(qm')}(qn) = \cdots = f_{\phi(m')}(n). \]

- For each $q \in \mathbb{N}$ without small prime factors, there exists $\hat{q} \in \mathbb{N}$ such that $\phi(\hat{q}q) = \phi(1)$.
- The last two items imply that if $\phi(q) = \phi(q')$ and $\phi(r) = \phi(r')$ then $\phi(qr) = \phi(q'r')$.
- Define a semigroup operation \circ on (a subset of) Σ_d by $\phi(q) \circ \phi(r) = \phi(qr)$.
- Apply classification of automatic multiplicative sequences to conclude that ϕ is periodic (on integers without small prime factors).
- Periodicity of ϕ implies asymptotic periodicity of f.
- Combining the last item with the fact from [Klurman 2017] finishes the argument.
Thank you for your attention!
Automatic semigroups

General fact
Let p be a prime and let E be a p-automatic set. Then E can be decomposed as
\[E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots, \]
the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)
Let $k \geq 2$ and let $E \subseteq \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \geq 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2\mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.
Automatic semigroups

General fact
Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots,$$

the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)
Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \geq 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2\mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.
Automatic semigroups

General fact
Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

$$E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots,$$

(†)

the sequence E_0, E_1, E_2, \ldots is eventually periodic, and $p \nmid n$ for all $n \in E_i$.

Theorem (Klurman, K. 2023+)
Let $k \geq 2$ and let $E \subset \mathbb{N}$ be a k-automatic semigroup. Assume further that E contains an infinite pairwise coprime subset.

- If k is a power of a prime p then for each $i \geq 0$, the sets E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the type $E = mX \cup m^2\mathbb{N}$, so the assumption cannot be removed. Not all sets of the above form are semigroups, but specifying which are is more mundane than difficult.
Automatic multiplicatively stable sets

Definition
- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition
Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\gcd(q,k) = 1$ and each $c \in \mathbb{Z}$, if we put $q' := \gcd(q,\Delta)$ then

$$d_{\log}((E-c)/q) = d_{\log}((E-c)/q').$$

Observation
Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\gcd(q,k\Delta) = 1$. Then $E/q \cong E$.

Proof:
- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $\gcd(q,\Delta) = 1$, we have $d_{\log}(E/q) = d_{\log}(E)$.
- Combining the two points above: $d_{\log}(E/q\Delta E) = d_{\log}(E/q) - d_{\log}(E) = 0$. □
Automatic multiplicatively stable sets

Definition
- For $E \subseteq \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition
Let $E \subseteq \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with gcd$(q, k) = 1$ and each $c \in \mathbb{Z}$, if we put $q^\prime := \text{gcd}(q, \Delta)$ then
\[
d_{\log}((E - c)/q) = d_{\log}((E - c)/q^\prime).
\]

Observation
Let $E \subseteq \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and gcd$(q, k\Delta) = 1$. Then $E/q \simeq E$.

Proof:
- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since gcd$(q, \Delta) = 1$, we have $d_{\log}(E/q) = d_{\log}(E)$.
- Combining the two points above: $d_{\log}(E/q \Delta E) = d_{\log}(E/q) - d_{\log}(E) = 0$. □
Automatic multiplicatively stable sets

Definition

- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\gcd(q, k) = 1$ and each $c \in \mathbb{Z}$, if we put $q' := \gcd(q, \Delta)$ then

$$d_{\log}((E - c)/q) = d_{\log}((E - c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

Proof:

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $\gcd(q, \Delta) = 1$, we have $d_{\log}(E/q) = d_{\log}(E)$.
- Combining the two points above: $d_{\log}(E/q \Delta E) = d_{\log}(E/q) - d_{\log}(E) = 0$. \qed
Automatic multiplicatively stable sets

Definition

- For $E \subseteq \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition

Let $E \subseteq \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\gcd(q, k) = 1$ and each $c \in \mathbb{Z}$, if we put $q' := \gcd(q, \Delta)$ then

$$d\log((E - c)/q) = d\log((E - c)/q').$$

Observation

Let $E \subseteq \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\gcd(q, k\Delta) = 1$. Then $E/q \sim E$.

Proof:

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $\gcd(q, \Delta) = 1$, we have $d \log(E/q) = d \log(E)$.
- Combining the two points above: $d \log(E/q \Delta E) = d \log(E/q) - d \log(E) = 0$.

\[32/32\]
Automatic multiplicatively stable sets

Definition

For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition

Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\gcd(q, k) = 1$ and each $c \in \mathbb{Z}$, if we put $q' := \gcd(q, \Delta)$ then

$$d_{\log}((E - c)/q) = d_{\log}((E - c)/q').$$

Observation

Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\gcd(q, k\Delta) = 1$. Then $E/q \cong E$.

Proof:

- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $\gcd(q, \Delta) = 1$, we have $d_{\log}(E/q) = d_{\log}(E)$.
- Combining the two points above: $d_{\log}(E/q \Delta E) = d_{\log}(E/q) - d_{\log}(E) = 0$.

Automatic multiplicatively stable sets

Definition
- For $E \subset \mathbb{N}$ and $m \in \mathbb{N}$ we let $E/m = \{n \in \mathbb{N} : mn \in E\}$. Note: $(mE)/m = E$.

Proposition
Let $E \subset \mathbb{N}$ be a k-automatic set. There exists a constant $\Delta \in \mathbb{N}$ with the property that for each $q \in \mathbb{N}$ with $\gcd(q, k) = 1$ and each $c \in \mathbb{Z}$, if we put $q' := \gcd(q, \Delta)$ then

$$d_{\log}((E - c)/q) = d_{\log}((E - c)/q').$$

Observation
Let $E \subset \mathbb{N}$ be a k-automatic semigroup, $q \in E$ and $\gcd(q, k\Delta) = 1$. Then $E/q \simeq E$.

Proof:
- Since E is a semigroup and $q \in E$, we have $E/q \supseteq E$.
- Since $\gcd(q, \Delta) = 1$, we have $d_{\log}(E/q) = d_{\log}(E)$.
- Combining the two points above: $d_{\log}(E/q\Delta E) = d_{\log}(E/q) - d_{\log}(E) = 0$. □
Multiplicative invariance

Definition
Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

\[
\text{Inv}(E) := \{ q \in \mathbb{N} : E/q \simeq E \},
\]
\[
\text{Rev}(E) := \{ q \in \mathbb{N} : q\mathbb{N} \cap \text{Inv}(E) \neq \emptyset \}.
\]

Theorem (Klurman, K. 2023+)
Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \text{Inv}(E)$ and $d_{\log}(F') > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)
- The set Rev(E) is periodic.
- We can construct a finite group $G_E := \text{Rev}(E)/\text{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.
Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

- $\text{Inv}(E) := \{q \in \mathbb{N} : E/q \simeq E\}$,
- $\text{Rev}(E) := \{q \in \mathbb{N} : q\mathbb{N} \cap \text{Inv}(E) \neq \emptyset\}$.

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \text{Inv}(E)$ and $d_{\text{log}}(F) > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\text{Rev}(E)$ is periodic.
- We can construct a finite group $G_E := \text{Rev}(E)/\text{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.
Multiplicative invariance

Definition

Let $E \subset \mathbb{N}$ be a set. We define the asymptotically invariant and reversible sets:

$$\text{Inv}(E) := \{ q \in \mathbb{N} : E/q \simeq E \},$$

$$\text{Rev}(E) := \{ q \in \mathbb{N} : q\mathbb{N} \cap \text{Inv}(E) \neq \emptyset \}.$$

Theorem (Klurman, K. 2023+)

Let $k \geq 2$, let $E, F \subset \mathbb{N}$ be k-automatic sets with $F \subset \text{Inv}(E)$ and $d_{\log}(F') > 0$.

- If k is a power of a prime p then $E = E_0 \cup pE_1 \cup p^2E_2 \cup \ldots$, where E_i are asymptotically periodic.
- If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimplified)

- The set $\text{Rev}(E)$ is periodic.
- We can construct a finite group $G_E := \text{Rev}(E)/\text{Inv}(E)$.
- The quotient map $\pi_E : \mathbb{N} \to G_E \cup \{0\}$ is k-automatic.
- The map π_E is periodic (by classification of automatic multiplicative sequences).
- The set E is asymptotically periodic.
Asymptotically automatic sequences

Question

- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example

Let E be 10-automatic set with $2 \in \text{Inv}(E)$. Then 1_E is asymptotically 5-automatic;

$$1_E(5^\alpha n + m) \simeq 1_E(10^\alpha n + 2^\alpha m) \in \mathcal{N}_{10}(1_E(n))$$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^\alpha$, and hence $\#(\mathcal{N}_5(1_E)/\simeq) \leq \#(\mathcal{N}_{10}(1_E))$.

Corollary

If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.
Asymptotically automatic sequences

Question
- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example
Let E be 10-automatic set with $2 \in \text{Inv}(E)$. Then 1_E is asymptotically 5-automatic;

$$1_E(5^\alpha n + m) \simeq 1_E(10^\alpha n + 2^\alpha m) \in \mathcal{N}_{10}(1_E(n))$$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^\alpha$, and hence $\#(\mathcal{N}_5(1_E)/\simeq) \leq \#(\mathcal{N}_{10}(1_E))$.

Corollary
If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.
Asymptotically automatic sequences

Question
- Can we characterise pairs of k-automatic sets $E, F \subset \mathbb{N}$ with $F \subset \text{Inv}(E)$?
- Can we use assumptions like $E/q \simeq E$ or $E/q \supseteq E$ when q is not coprime to k?

Example
Let E be 10-automatic set with $2 \in \text{Inv}(E)$. Then 1_E is asymptotically 5-automatic;

$$1_E(5^\alpha n + m) \simeq 1_E(10^\alpha n + 2^\alpha m) \in \mathcal{N}_{10}(1_E(n))$$

for each $\alpha, m \in \mathbb{N}$ with $m < 5^\alpha$, and hence $\# (\mathcal{N}_5(1_E)/\simeq) \leq \# (\mathcal{N}_{10}(1_E))$.

Corollary
If $E \subset \mathbb{N}$ is a 10-automatic set with $2 \in \text{Inv}(E)$ then E is asymptotically periodic.