
On asymptotically automatic sequences

Jakub Konieczny

Camille Jordan Institute
Claude Bernard University Lyon 1

Numeration Conference
22 V 2023, Liége



The Thue�Morse(�Prouhet) sequence

The Thue�Morse sequence (discovered by Prouhet) t : N→ {0, 1},

01101001100101101001011001101001 . . .

is a (the?) paradigmatic example of an automatic sequence. It can be described in
several equivalent ways:

1 Explicit formula: t(n) =

{
0 if n is evil (i.e., sum of binary digits is even),

1 if n is odious (i.e., sum of binary digits is odd).

2 Finite automaton:

0start 1

0 0

1

1

3 Recurrence: t(0) = 0, t(2n) = t(n), t(2n+ 1) = 1− t(n).

4 Fixed point of a substitution: 0 7→ 01, 1 7→ 10.

5 Algebraic formal power series: If T (z) =
∑∞
n=0 t(n)z

n ∈ F2[[z]] then

z + (1 + z)2T (z) + (1 + z)3T (z)2 = 0.
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Automatic sequences via �nite automata

Some notation: We let k denote the base in which we work. −→ e.g. k = 10, k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗
k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗
k is the base-k expansion of n; −→ no leading zeros

for w ∈ Σ∗
k, [w]k ∈ N is the integer encoded by w.

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → Ω. +1start −1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗
k with δ(s, uv) = δ(δ(s, u), v) or δ(δ(s, v), u);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Intuition: Automatic ⇐⇒ Computable by a �nite device.
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Automatic sequences via kernels

De�nition (Kernel)

Let k ≥ 2 and let f : N→ Ω be a sequence. Then the k-kernel of f is the set

Nk(f) := {fα,m : α,m ∈ N, m < kα} , where fα,m(n) := f(kαn+m).

Examples:

Let t be the Thue�Morse sequence, t(n) = s2(n) mod 2. Then

N2(t) = {t, 1− t}.

Let r(n) be the Rudin�Shapiro sequence, r(n) = (−1)# of 11 in (n)2 . Then
r(2n) = r(n), r(4n+ 1) = r(n), r(4n+ 3) = −r(2n+ 1). Hence,

N2(r) = {±r,±r′}, where r′(n) = r(2n+ 1).

Proposition

A sequence f is k-automatic if and only if it has �nite k-kernel, #Nk(f) <∞.

Idea: Let A = (S, δ,Ω, τ) be a (reduced) k-automaton computing f , reading least
signi�cant digits �rst. There is a bijection S ←→ Nk(f).
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Asymptotics

Two sequences f, g : N→ Ω are asymptotically equal, denoted by

f(n) ≃ g(n),

if they di�er on a set with asymptotic density zero:

# {n < N : f(n) ̸= g(n)} /N → 0 as N →∞.

A sequence f : N→ Ω is asymptotically invariant under shift by m ∈ N (or
asymptotically shift-invariant, if m does not matter) if

f(n+m) ≃ f(n).

A sequence f : N→ Ω is asymptotically periodic if there is a periodic sequence
f̃ : N→ Ω such that

f(n) ≃ f̃(n).

Example

Each asymptotically periodic sequence is asymptotically shift invariant.

An asymptotically shift-invariant sequence is not necessarily asymptotically
periodic, e.g. f(n) = ⌊

√
n⌋ mod 2.
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Asymptotically automatic sequences

De�nition

Let k ≥ 2 be a base and let f : N→ Ω be a sequence. Then f is asymptotically
k-automatic if and only if Nk(f)/≃ is �nite. In other words, f is asymptotically
k-automatic if there exist sequences f0, f1, . . . , fd−1 : N→ Ω such that for each
f ′ ∈ Nk(f) there exists 0 ≤ i < d such that f ′(n) ≃ fi(n).

Example

Let f : N→ Ω be k-automatic and let g : N→ Ω be a sequence with f(n) ≃ g(n).
Then g is asymptotically k-automatic.

Example

Let λ(n) denote the number of leading 1s in the binary expansion of n and

f(n) = f
([

11 . . . 1︸ ︷︷ ︸
λ(n)

0 ∗ ∗ · · · ∗
]
2

)
=

{
1 if λ(n) is prime,

0 otherwise.

Then f is asymptotically 2-automatic.
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Motivation

Why study the class of asymptotically automatic sequences?

�Because it's there.� � George Mallory

Because it yields density versions of theorems on automatic sequences.
(e.g. density version of Cobham's theorem)

Because it sometimes comes up in applications.
(e.g. upcoming work with O. Klurman on classi�cation of automatic semigroups)

To better understand relations between properties of automatic sequences.
(e.g. do they �follow only from� the �niteness of the kernel)
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Basic properties

Lemma (Closure under Cartesian products)

Let f : N→ Ω, f ′ : N→ Ω′ be asymptotically k-automatic. Then f × f ′ : N→ Ω× Ω′

is also asymptotically k-automatic.

Lemma (Closure under coding)

Let f : N→ Ω be asymptotically k-automatic and let ρ : Ω→ Ω′ be any map. Then
ρ ◦ f : N→ Ω′ is also asymptotically k-automatic.

Corollary: Complex-valued asymptotically k-automatic sequences constitute a ring.

Lemma (Passing to arithmetic progressions)

Let f : N→ Ω be a sequence.

If f is asymptotically k-automatic then each restriction f ′(n) = f(an+ b)
(a, b ∈ N) of f to an arithmetic progression is asymptotically k-automatic.

Conversely, if there exists a > 0 such that f ′(n) = (an+ b) is asymptotically
k-automatic for each 0 ≤ b < a, then f is asymptotically k-automatic.
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Automata
Recall that Σk = {0, 1, . . . , k − 1} and Σ∗

k = words over Σk.

De�nition

The k-kernel of a map ϕ : Σ∗
k → Ω is the set of maps Σ∗

k → Ω given by

Nk(ϕ) = {ϕv : v ∈ Σ∗
k} , where ϕv(u) := ϕ(uv) for u, v ∈ Σ∗

k.

The map ϕ : Σ∗
k → Ω is k-automatic if #Nk(ϕ) <∞.

Lemma

Fix a base k ≥ 2. For a sequence f : N→ Ω, the following conditions are equivalent.

1 f is asymptotically k-automatic;

2 there exists d ∈ N, f0, f1, . . . , fd−1 : N→ Ω and a k-automatic map ϕ : Σ∗
k → Σd

such that for each u ∈ Σ∗
k with length α := |u| we have

f (kαn+ [u]k) = f ([(n)ku]k) ≃ fϕ(u)(n). (∗)

If the second condition holds, then #
(
Nk(f)/≃) ≤ d, so we are done.

Let f be asymptotically k-automatic, and let fi be representatives of Nk(f)/≃.
There is a unique map ϕ : Σ∗

k → Σd such that (∗) holds.
It remains to check that ϕ is automatic. In fact, #Nk(ϕ) ≤ d.
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Bases

Two integers k, ℓ ≥ 2 are multiplicatively dependent if they are both powers of the
same integer: k = ma, ℓ = mb (m,a, b ∈ N).

Fact

If k, ℓ ≥ 2 are multiplicatively dependent, then k-automatic sequences are the same as
ℓ-automatic sequences. The same holds for asymptotically automatic sequences.

Idea: For simplicity, say ℓ = kc for c ∈ N. Then Σ∗
k can (almost) be identi�ed with

Σ∗
ℓ by grouping blocks of c symbols.

A sequence f : N→ Ω is eventually periodic if there exist n0 and m > 0, such that
f(n+m) = f(n) for all n ≥ n0.

Fact

Let f : N→ Ω be sequence that is eventually periodic. Then f is k-automatic for all
bases k ≥ 2.

Basic question: Given an automatic sequence f , in which bases is it automatic?
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Cobham's theorem

Theorem (Cobham, 1969)

Let k, ℓ ≥ 2 be two bases and let f : N→ Ω be a sequence. If f is k-automatic and
ℓ-automatic, then either

the bases k and ℓ are multiplicatively dependent, or

the sequence f is eventually periodic.

Corollary: The set of bases in which a given sequence is automatic is one of:

∅, {ka : a ≥ 1} for some k ≥ 2, N.

Intuition: A sequence cannot be automatic in two di�erent bases
(except for trivial cases).

Example

There is no 3-automaton which computes the Thue�Morse sequence.
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Generalisations of Cobham's theorem

Analogues of Cobham's theorem are known in the following contexts:

Multidimensional sequences [Semenov 1977].

Morphic sequences [Durand 2011].

Fractals [Adamczewski, Bell 2011].

Regular sequences [Bell 2007].

Mahler series [Adamczewski, Bell 2017].

Real numbers [Boigelot, Brusten 2009].

etc., etc., . . .

Instead of one sequence f : N→ Ω, we can consider two sequences f, g : N→ Ω that
are k- and ℓ-automatic respectively, and which are �close enough�. Cobham's theorem
continues to hold mutatis mutandis when the assumption that f = g is weakened to:

The sequences f and g generate the same language [Fagnot 1997].

The sequences f and g are asymptotically equal [Byszewski, K. 2017].
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Density version of Cobham's theorem

Theorem (Byszewski, K. 2017)

Let k, ℓ ≥ 2 be two multiplicatively independent bases. Let f : N→ Ω be a k-automatic
sequence and let g : N→ Ω be an ℓ-automatic sequence such that f(n) ≃ g(n). Then f
and g are asymptotically periodic.

Example (Least signi�cant digit of n!)

Let ℓk(n) denote the �rst non-zero digit of n in base k, e.g. ℓ10(10!) = ℓ10(3628800) = 8.

The sequences ℓk(n!) were studied by Deshouillers and Ruzsa, among others.

Interesting feature: If k is a prime power then ℓk(n!) is k-automatic.

More generally, let k = pα1
1 pα2

2 · · · pαr
r be the prime factorisation of k, where

α1(p1 − 1) ≥ α2(p2 − 1) ≥ · · · ≥ αr(pr − 1).

The sequence ℓk(n!) is p1-automatic as long as α1(p1 − 1) ̸= α2(p2 − 1).

Rationale: νp(n!) =
n− sp(n)

p− 1
≈

n

p− 1
, so we expect that ℓk(n!) ≡ 0 mod k/pα1

1 .

For k = 12 we have α1(p1 − 1) = α2(p2 − 1) = 2. Deshouillers and Ruzsa showed that
ℓ12(n!) ≃ f(n) for a 3-automatic sequence f : N → {4, 8}. Also, 1y(ℓ12(n!)) is not
automatic for y = 3, 6, 9, and in particular, ℓ12(n!) is not automatic.

It follows from density Cobham's theorem that 1y(ℓ12(n!)) is not automatic for y = 4, 8.
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Asymptotic versions of Cobham's theorem

Theorem (K. 2022)

Let k, ℓ ≥ 2 be two multiplicatively independent bases. Let f : N→ Ω be a sequence
that is asymptotically k-automatic and asymptotically ℓ-automatic.
Then f is asymptotically shift invariant.

Theorem (K. 2022)

Let k, ℓ ≥ 2 be two multiplicatively independent bases. Let f : N→ Ω be a sequence
that is (classically) k-automatic and asymptotically ℓ-automatic.
Then f is asymptotically periodic.

Asymptotic Cobham's theorem =⇒ Density Cobham's theorem.

Let f : N→ Ω be a k-automatic sequence and let g : N→ Ω be an ℓ-automatic
sequence such that f(n) ≃ g(n). Then f is asymptotically ℓ-automatic. Hence, by
asymptotic Cobham's theorem, f is asymptotically periodic.
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Asymptotic versions of Cobham's theorem

One might hope for a joint generalisation of the two theorems from the last slide:

Conjecture

Let k, ℓ ≥ 2 be two multiplicatively independent bases. Let f : N→ Ω be a sequence
that is asymptotically k-automatic and asymptotically ℓ-automatic.
Then f is asymptotically periodic.

Unfortunately(?), this is false.

Example

Let us order all integers of the form 2α3β in increasing order

H := {H0 < H1 < H2 < · · · } :=
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Let Hi = 2αi3βi and de�ne f : N→ {−1,+1} by

f(n) := (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

We will show that f is asymptotically 2- and 3-automatic, but not asymptotically
periodic.
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Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.
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Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
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)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
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)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder about notation:

H = {H0 < H1 < H2 < · · · } =
{
2α3β : α, β ≥ 0

}
= {1, 2, 3, 4, 6, 8, 9, 12, . . . }.

Hi = 2αi3βi , f(n) = (−1)αi+βi for n ∈ [Hi, Hi+1) and i ≥ 0.

Fact: Hi+1/Hi → 1 as i→∞. Proof: Kronecker equidistribution theorem.

Lemma

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n)

We only discuss f(2n) ≃ −f(n). Consider any n ∈ [Hi, Hi+1) with f(2n) = f(n).

We have 2n ∈ [2Hi, 2Hi+1), where 2Hi =: Hj ∈ H and 2Hi+1 =: Hj′ ∈ H.
If 2n ∈ [Hj , Hj+1) then f(2n) = (−1)(αi+1)+βi = −f(n), so j′ ≥ j + 2.

Since Hi < Hj+1/2 < Hi+1 we have 2 ∤ Hj+1. Thus, Hj+1 is a power of 3.

Since [Hj , Hj′) cannot contain two powers of 3, we have j′ = j + 2.

Summarising, we have 2n ∈
[
Hj+1, Hj+2

)
=

[
3βj+1 , 3βj+1(1 + o(1))

)
.

Thus, the number of �bad� n's in
[
1
2
3β , 1

2
3β+1

)
is o(3β). Take sum w.r.t. β.

15 / 32



Example in bases 2 and 3

Reminder:

f(n+ 1) ≃ f(n) f(2n) ≃ −f(n) f(3n) ≃ −f(n).

Corollary

The sequence f is asymptotically 2- and 3-automatic.

In fact, #(N2(f)/≃) ≤ 2 and #(N3(f)/≃) ≤ 2.

Lemma

The sequence f is not asymptotically periodic.

Suppose, for the sake of contradiction, that f(n) ≃ f̃(n) for periodic f̃ .
Since f(n+1) ≃ f(n), also f̃(n+1) ≃ f̃(n) and hence f̃(n) = c = ±1 is constant.
Since f(2n) ≃ −f(n), also f̃(2n) ≃ −f̃(n), so c = −c, but this is impossible.

Summary: A sequence that is asymptotically k- and ℓ-automatic for multiplicatively
independent k, ℓ ≥ 2 does not need to be asymptotically periodic.
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Bases of automaticity

For a sequence f : N→ Ω, put Baut(f) := {k ∈ N : f is k-automatic} .

Theorem (Cobham; alternative phrasing)

Let f : N→ Ω be a sequence. Then Baut(f) one of:

the empty set ∅ (i.e., f is not automatic);

a geometric progression {ka : a ≥ 1} for some k ≥ 2;

all integers N (i.e., f is eventually periodic).

In the same spirit, put Basy(f) := {k ∈ N : f is asymptotically k-automatic} .

Theorem (asymptotic variant of Cobham; alternative phrasing)

Let f : N→ Ω be a sequence. Then one of the following holds:

Baut(f) = ∅ (i.e., f is not automatic);

Basy(f) = Baut(f) = {ka : a ∈ N} for some k ≥ 2;

Basy(f) = Baut(f) = N (i.e., f is asymptotically periodic).
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Bases of automaticity

Lemma

Let f : N→ Ω be a sequence. Then the set Basy(f) of bases with respect to which f is
asymptotically automatic has the following closure properties:

if k, ℓ ∈ Basy(f) then kℓ ∈ Basy(f);

if k, ℓ ∈ Basy(f) and k/ℓ ∈ N then k/ℓ ∈ Basy(f);
if k ∈ Basy(f), a ∈ Q+ and ka ∈ N then ka ∈ Basy(f).

Corollary

Let f : N→ Ω be a sequence. There exists a vector space V <
⊕

p∈P Q such that

Basy(f) = {k ∈ N≥2 : (νp(f))p∈P ∈ V } .

Conjecture: The converse is also true.
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Open problems

Conjecture

Let V <
⊕

p∈P Q be a vector space. Then there exists a sequence f : N→ Ω such that

Basy(f) = {k ∈ N≥2 : (νp(f))p∈P ∈ V } .

Question

Are the following situations possible?

Basy(f) =
{
2a3b : a, b ∈ N

}
(we know: Basy(f) ⊇

{
2a3b : a, b ∈ N

}
is possible);

Basy(f) =
{
2a3b5c : a, b, c ∈ N

}
;

Basy(f) = N, but f is not asymptotically periodic.

Comments

It is straightforward to generalise the example for bases 2 and 3 to any �nite set
of primes, but proving f(pn) ≃ −f(n) requires a new argument.

There are currently no good tools for proving that a given sequence f is not
asymptotically k-automatic for given k ≥ 2.
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Proof of asymptotic Cobham's theorem

Assumptions and notation:

k, ℓ ≥ 2 are multiplicatively independent integers;

f : N→ Ω is asymptotically k-automatic and asymptotically ℓ-automatic;

f0, f1, . . . , fd−1 are representatives of Nk(f)/≃; f⃗ := (f0, f1, . . . , fd−1) : N→ Ωd;

g0, g1, . . . , ge−1 are representatives of Nℓ(f)/≃; g⃗ := (g0, g1, . . . , ge−1) : N→ Ωe;

ϕ : Σ∗
k → Σd is k-automatic and f (kαn+ [u]k) ≃ fϕ(u)(n);

ψ : Σ∗
ℓ → Σe is ℓ-automatic and f

(
ℓβn+ [v]ℓ

)
≃ fψ(v)(n);

To simplify: ϕ(0u) = ϕ(u) for u ∈ Σ∗
k and ψ(0v) = ψ(u) for v ∈ Σ∗

ℓ ; thus

f
(
kαn+m

)
≃ fϕ((m)k)(n) f

(
ℓβn+m

)
≃ fψ((m)ℓ)(n) for each m ∈ N.
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Proof of asymptotic Cobham's theorem

Lemma

Let α, β ∈ N, x⃗ ∈ Ωd, y⃗ ∈ Ωe and E :=
{
n ∈ N : f⃗(ℓβn) = x⃗, g⃗(kαn) = y⃗

}
. Suppose

that d̄(E) > 0. Then xϕ((m)k) = yψ((m)ℓ) for all 0 ≤ m < min(kα, ℓβ).

Proof of Lemma:

f(kαℓβn+m) = fϕ((m)k)(ℓ
βn) = xϕ((m)k) for almost all n ∈ E.

f(kαℓβn+m) = gψ((m)ℓ)(k
αn) = yψ((m)ℓ) for almost all n ∈ E.

Since d̄(E) > 0, there is at least one n ∈ N such that

xϕ((m)k) = f(kαℓβn+m) = yψ((m)ℓ).
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Proof of asymptotic Cobham's theorem

Lemma

Let α, β ∈ N, x⃗ ∈ Ωd and y⃗ ∈ Ωe. Suppose that

d̄
({
n ∈ N : f⃗(ℓβn) = x⃗, g⃗(kαn) = y⃗

})
> 0. (∗)

Then xϕ((m)k) = yψ((m)ℓ) for all 0 ≤ m < min(kα, ℓβ).

Corollary

Let x⃗ ∈ Ωd. The sequence xϕ((m)k) is eventually periodic, provided that (∗) holds for
arbitrarily large α, β ∈ N for some y⃗ ∈ Ωe. Call such x⃗ �good�.

Directly by de�nition, xϕ((m)k) is k-automatic and yψ((m)ℓ) is ℓ-automatic.

By Lemma, xϕ((m)k) = yψ((m)ℓ) is k- and ℓ-automatic.

By Cobham's theorem, xϕ((m)k) = yψ((m)ℓ) is eventually periodic.

Let q be the least common multiple of periods from Corollary above. For ease of
notation assume xϕ((m)k) is genuinely periodic.
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Proof of asymptotic Cobham's theorem

Corollary

The sequence xϕ((m)k) has period q for each �good� x⃗ ∈ Ωd.

Lemma

Let n ∈ N. Then
f(n+ q) = f(n),

provided that there exists a decomposition n = kαn′ +m where m < kα − q and
x⃗ := f⃗(n′) is �good�.

Proof: f(kαn′ +m+ q) = xϕ((m+q)k) = xϕ((m)k) = f(kαn′ +m).

Lemma

For asymptotically almost all n, there exists a decomposition n = kαn′ +m where
n′,m, α ∈ N, m < kα − q, f⃗(n′) is �good�.

Proof idea: For each α < logk n, there is a positive chance to �nd the decomposition.

Corollary

The sequence f(n) is asymptotically invariant under shift by q, QED.
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Proof of �mixed� Cobham's theorem

Assumptions and notation:

k, ℓ ≥ 2 are multiplicatively independent integers;

f : N→ Ω is k-automatic and asymptotically ℓ-automatic;

By previous theorem, f is asymptotically invariant under shift by some q ≥ 1;

To simplify, assume that q = 1.

Lemma

Let g : N→ {0, 1} be a k-automatic sequence with g(n) ≃ 0. Then there is n0 ∈ N with

g(kαn0 +m) = 0 for all α ∈ N, 0 ≤ m < kα.

Proof idea: Pick an automaton computing g, reading input from the most signi�cant
digit. The output function is 0 on each strongly connected component. Pick v ∈ Σ∗

k

such that δ(s0, v) lies in a strongly connected component, and put n0 = [v]k.

Let n0 be the constant from the Lemma applied to the k-automatic sequence

g(n) =

{
1 if f(n+ 1) ̸= f(n),

0 if f(n+ 1) = f(n).
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Proof idea: Pick an automaton computing g, reading input from the most signi�cant
digit. The output function is 0 on each strongly connected component. Pick v ∈ Σ∗

k

such that δ(s0, v) lies in a strongly connected component, and put n0 = [v]k.

Let n0 be the constant from the Lemma applied to the k-automatic sequence

g(n) =

{
1 if f(n+ 1) ̸= f(n),

0 if f(n+ 1) = f(n).
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Proof of �mixed� Cobham's theorem

Reminder about assumptions and notation:

f : N→ Ω is k-automatic and asymptotically ℓ-automatic;

f is constant on each interval [kαn0, k
α(n0 + 1)).

Fact: The sequence f(kαn0) is eventually periodic with respect to α.

To simplify: assume that f(kαn0) =: c is constant.

Thus f(n) = c for n ∈ [kαn0, k
α(n0 + 1)) and α ∈ N.

In other words, f(n) = c for all n such that

{logk(n)} ∈ [µ0, µ0 + δ),

where µ0 := {logk(n0)} and δ := logk(1 + 1/n0).

Let us say that an interval I ⊂ R/Z is �nice� if f(n) = c for almost all n with
{logk(n)} ∈ I. Thus, [µ0, µ0 + δ) is �nice�.

Fact: There exist β, γ ∈ N such that f(ℓβn) ≃ f(ℓγn).
To simplify: assume that f(ℓn) ≃ f(n).
Note that logk(ℓ

in) = logk(n) + iθ, where θ := logk(ℓ) is irrational.

Thus, for each i ∈ N, the interval [µi, µi + δ) is �nice�, where µi := µ0 − iθ mod 1.

End of proof: Cover R/Z with a �nite union of of �nice� intervals.
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Frequencies

De�nition

Let f : N→ Ω, ω ∈ Ω. The (asymptotic / logarithmic) frequency of ω if f is:

freq(f ;ω) := lim
N→∞

1

N
·# {n < N : f(n) = ω} ,

freqlog(f ;ω) := lim
N→∞

1

logN

N−1∑
n=0

1{ω}(n)

n+ 1
.

Proposition (Frequencies of symbols in automatic sequences)

Let f : N→ Ω be automatic and ω ∈ Ω. Then

the logarithmic frequency freqlog(f ;ω) exists;

if the frequency freq(f ;ω) exists then it is rational.

The asymptotic analogue is utterly false.
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Frequencies

Proposition

There exists an asymptotically 2-automatic sequence f : N→ {0, 1} such that

0 = lim inf
N→∞

1

logN

N−1∑
n=0

f(n)

n+ 1
< lim sup

N→∞

1

logN

N−1∑
n=0

f(n)

n+ 1
= 1.

Proposition

For each θ ∈ [0, 1] there exists an asymptotically 2-automatic sequence f : N→ {0, 1}
such that freq(f ; 1) = θ.
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Frequencies � Proof ideas

We can write the binary expansion of any n ∈ N as

(n)2 = u
(n)
1 u

(n)
2 · · ·u(n)

r(n)v
(n),

where r(n) ∈ N, each u(n)
i ends with 1, |u(n)

i |1 = i, and |v(n)|1 ≤ r(n).
We always have r(2n) = r(n), and the expansion of 2n takes the form

(2n)2 = u
(n)
1 u

(n)
2 · · ·u(n)

r(n)(v
(n)0).

We usually have r(2n+ 1) = r(n), and the expansion of 2n+ 1 takes the form

(2n)2 = u
(n)
1 u

(n)
2 · · ·u(n)

r(n)(v
(n)1).

This is the case unless |v(n)|1 = r(n).

Thus, for any F : Σ∗
21→ Ω, the sequence f : N→ Ω given by

f(n) = F (u
(n)

r(n))

is asymptotically 2-automatic.
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Classi�cation problems

General questions: Fix the base k ≥ 2.

Given a sequence f : N→ Ω, decide if it is k-automatic.

Given a class of sequences F , �nd all f ∈ F which are k-automatic.

De�nition

A set E ⊂ N is k-automatic if 1E is k-automatic.

Given a class S of subsets of N, �nd all E ∈ S that are k-automatic.

Examples:

Cobham's theorem: If k, ℓ ∈ N are multiplicatively independent, then an ℓ-automatic
sequence is k-automatic if and only if it is eventually periodic.

Primes and squares: It is a standard exercise that the set of the primes and the set of
the squares are not automatic. In fact, the set {p(n) : n ∈ N} of values of a polynomial
p is automatic if and only if deg p = 1.

Generalised polynomials: Allouche and Shallit showed that sequences of the form
(⌊αn+ β⌋ mod q)∞n=0 are automatic if and only if they are periodic.
Together with Byszewski, we extended this to arbitrary generalised polynomials, i.e.,
expressions built up from polynomials using +, × and ⌊•⌋.

A sequence f : N → C is multiplicative if f(nm) = f(n)f(m) for each n,m ∈ N with
gcd(n,m) = 1. A complete classi�cation was obtained in by K.�Lema«czyk�Müllner.
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Addition vs. multiplication � heuristics

Multiplicative sequences are de�ned in terms of the multiplicative structure of N.
Automatic sequences are fundamentally connected to the additive structure of N.
Thus, heuristically, we expect that there should not be any �non-trivial�
automatic multiplicative sequences.

Example (Automatic multiplicative sequences)

The following families of sequences are automatic and multiplicative:

Dirichlet characters, and more generally periodic multiplicative sequences;

f(n) = ωνp(n), where νp(n) = max {ν : pν | n} and ω = exp(2πi/r);

eventually zero multiplicative sequences.

Example (Automatic multiplicative semigroups)

The following families of multiplicative semigroups are automatic:

periodic semigroups; {n ∈ N : νp(n) ≡ 0 mod r}; N \ {pα : α ∈ N};
mX ∪m2N where m ∈ N and X ⊂ N is any automatic set.
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Classi�cation of automatic multiplicative sequences

General fact

Fix a prime p. Each non-zero multiplicative sequence f has a unique representation

f(n) = h(νp(n)) · g(n/pνp(n)), (†)

where h(0) = 1 and g(pn) = 0 for all n. Additionally, g is multiplicative.

Theorem (K., Lema«czyk, Müllner 2020)

Fix k ≥ 2 and let f : N→ C be a non-zero multiplicative sequence.

If k is a power of a prime p then f is k-automatic i� h and g given by (†) are
eventually periodic. (In this case, g must be either periodic or eventually zero.)

If k has ≥ 2 prime divisors then f is k-automatic i� f is eventually periodic.

Remark: Conversely, each sequence f of the form described above is both
k-automatic and multiplicative.
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Classi�cation of automatic multiplicative sequences

Theorem (K.)

Fix k ≥ 2 and let f : N→ C be an asymptotically automatic multiplicative sequence.
Then there exists χ : N→ C that is either a Dirichlet character or identically 0, such
that f(pα) = χ(pa) for all su�ciently large primes p and all α ∈ N.

Proof ideas:

Key ingredient [Klurman 2017]: If f is �nitely-valued, multiplicative and asymptotically
invariant under a shift then f ≃ 0 or f is periodic.

We can use old tricks to assume that f is completely multiplicative.

Like earlier, we can �nd f0, f1, . . . , fd−1 and k-automatic ϕ : Σ∗
k → Σd such that

f(k|u|n+ [u]k) ≃ fϕ(u)(n) for u ∈ Σ∗
k. To simplify, assume that ϕ(0u) = ϕ(u).

If f(q) ̸= 0 and ϕ(qm) = ϕ(qm′) then ϕ(m) = ϕ(m′):

fϕ(m)(n) ≃ f(kin+m) = f(q)−1f(kiqn+ qm) ≃ f(q)−1fϕ(qm)(qn)

≃ f(q)−1fϕ(qm′)(qn) = · · · = fϕ(m′)(n).

For each q ∈ N without small prime factors, there exists q̂ ∈ N such that ϕ(q̂q) = ϕ(1).

The last two items imply that if ϕ(q) = ϕ(q′) and ϕ(r) = ϕ(r′) then ϕ(qr) = ϕ(q′r′).

De�ne a semigroup operation ⊙ on (a subset of) Σd by ϕ(q)⊙ ϕ(r) = ϕ(qr).

Apply classi�cation of automatic multiplicative sequences to conclude that ϕ is periodic
(on integers without small prime factors).

Periodicity of ϕ implies asymptotic periodicity of f .

Combining the last item with the fact from [Klurman 2017] �nishes the argument.
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Thank you for your attention!



Automatic semigroups

General fact

Let p be a prime and let E be a p-automatic set. Then E can be decomposed as

E = E0 ∪ pE1 ∪ p2E2 ∪ . . . , (†)

the sequence E0, E1, E2, . . . is eventually periodic, and p ∤ n for all n ∈ Ei.

Theorem (Klurman, K. 2023+)

Let k ≥ 2 and let E ⊂ N be a k-automatic semigroup. Assume further that E
contains an in�nite pairwise coprime subset.

If k is a power of a prime p then for each i ≥ 0, the sets Ei are asymptotically
periodic.

If k has ≥ 2 prime divisors then E is asymptotically periodic.

Recall: When all elements of E are allowed to share a factor, we get examples of the
type E = mX ∪m2N, so the assumption cannot be removed. Not all sets of the
above form are semigroups, but specifying which are is more mundane than di�cult.
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Automatic multiplicatively stable sets

De�nition

For E ⊂ N and m ∈ N we let E/m = {n ∈ N : mn ∈ E}. Note: (mE)/m = E.

Proposition

Let E ⊂ N be a k-automatic set. There exists a constant ∆ ∈ N with the property
that for each q ∈ N with gcd(q, k) = 1 and each c ∈ Z, if we put q′ := gcd(q,∆) then

dlog((E − c)/q) = dlog((E − c)/q′).

Observation

Let E ⊂ N be a k-automatic semigroup, q ∈ E and gcd(q, k∆) = 1. Then E/q ≃ E.

Proof:

Since E is a semigroup and q ∈ E, we have E/q ⊇ E.
Since gcd(q,∆) = 1, we have dlog(E/q) = dlog(E).

Combining the two points above: dlog(E/q△E) = dlog(E/q)− dlog(E) = 0.
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Multiplicative invariance

De�nition

Let E ⊂ N be a set. We de�ne the asymptotically invariant and reversible sets:

Inv(E) := {q ∈ N : E/q ≃ E} ,
Rev(E) := {q ∈ N : qN ∩ Inv(E) ̸= ∅} .

Theorem (Klurman, K. 2023+)

Let k ≥ 2, let E,F ⊂ N be k-automatic sets with F ⊂ Inv(E) and dlog(F ) > 0.

If k is a power of a prime p then E = E0 ∪ pE1 ∪ p2E2 ∪ . . . , where Ei are
asymptotically periodic.

If k has ≥ 2 prime divisors then E is asymptotically periodic.

Proof ideas (slightly oversimpli�ed)

The set Rev(E) is periodic.

We can construct a �nite group GE := Rev(E)/ Inv(E).

The quotient map πE : N → GE ∪ {0} is k-automatic.

The map πE is periodic (by classi�cation of automatic multiplicative sequences).

The set E is asymptotically periodic.
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Asymptotically automatic sequences

Question

Can we characterise pairs of k-automatic sets E,F ⊂ N with F ⊂ Inv(E)?

Can we use assumptions like E/q ≃ E or E/q ⊇ E when q is not coprime to k?

Example

Let E be 10-automatic set with 2 ∈ Inv(E). Then 1E is asymptotically 5-automatic;

1E(5
αn+m) ≃ 1E(10

αn+ 2αm) ∈ N10(1E(n))

for each α,m ∈ N with m < 5α, and hence #(N5(1E)/≃) ≤ #(N10(1E)).

Corollary

If E ⊂ N is a 10-automatic set with 2 ∈ Inv(E) then E is asymptotically periodic.
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