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Prelude: Binary Sum of Digits

Binary expansion n =
∑

j≥0 εj2
j

Sum of digits s(n) =
∑

j≥0 εj

s(n) = s(bn/2c) + [n is odd]

for n ≥ 0 with s(0) = 0.
In other words:

s(2n) = s(n),

s(2n + 1) = s(n) + 1

for n ≥ 0 with s(0) = 0.
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Prelude: Merge Sort

Partition into two sets of (almost) equal size;

Sort both parts individually & recursively;

Merge results.

Number M(n) of comparisons when sorting n elements:

M(n) = M(dn/2e) + M(bn/2c) + n − 1

for n ≥ 1 with M(0) = M(1) = 0.
In other words:

M(2n) = 2M(n) + 2n − 1,

M(2n + 1) = M(n) + M(n + 1) + 2n

for n ≥ 1 with M(0) = M(1) = 0.
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(Un-)bordered Factors
(Un-)bordered

word w bordered:

exists non-empty word v 6= w
v is prefix and suffix of w

otherwise unbordered

bordered factor border length

t[5 . . 6] =

00 0 2

t[1 . . 2] =

11 1 2

t[3 . . 5] =

010 0 3

t[2 . . 4] =

101 1 3

t[2 . . 5] =

1010 10 4

t[0 . . 9] =

0110100110 0110 10

unbordered factor length

ε 0

t[0 . . 0] =

0 1

t[1 . . 1] =

1 1

t[0 . . 1] =

01 2

t[2 . . 3] =

10 2

t[0 . . 2] =

011 3

t[1 . . 3] =

110 3

t[4 . . 6] =

100 3

t[5 . . 7] =

001 3

Thue–Morse Sequence

t = 01101001 10010110 10010110 01101001 . . .
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Number of Unbordered Factors
Theorem (Goč–Henshall–Shallit 2013)

exists unbordered factor
of length n

in Thue–Morse sequence
⇐⇒ (n)2 /∈ 1(01∗0)∗10∗1

number f (n) of unbordered factors of length n
in the Thue–Morse sequence

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f (n) 1 2 2 4 2 4 6 0 4 4 4 4 12 0 4 4

Theorem (Goč–Mousavi–Shallit 2013)

inequality f (n) ≤ n holds for all n ≥ 4

f (n) = n infinitely often

lim supn≥1
f (n)
n = 1
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Recurrence Relations

number f (n) of unbordered factors of length n
in Thue–Morse sequence

recurrence relations

f (4n) = 2f (2n) (n ≥ 2)

f (4n + 1) = f (2n + 1) (n ≥ 0)

f (8n + 2) = f (2n + 1) + f (4n + 3) (n ≥ 1)

f (8n + 3) = −f (2n + 1) + f (4n + 2) (n ≥ 2)

f (8n + 6) = −f (2n + 1) + f (4n + 2) + f (4n + 3) (n ≥ 2)

f (8n + 7) = 2f (2n + 1) + f (4n + 3) (n ≥ 3)

Theorem (Goč–Mousavi–Shallit 2013)

f (n) satisfies recurrence relations above

f (n) is a 2-recursive sequence
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q-Recursive Sequences

Sequence x with

x(qMn + r) =
∑

`≤k≤u

cr ,k x(qmn + k)

for all n ≥ n0 and 0 ≤ r < qM .

Constants:

q ≥ 2, M > m ≥ 0, ` ≤ u, n0 ≥ max{−`/qm, 0} integers

cs,k ∈ C for all 0 ≤ s < qM and ` ≤ k ≤ u

q-recursive sequence
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q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).

Theorem (H–Krenn–Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the
q-recursive sequence are allowed.

Clemens Heuberger University of Klagenfurt 8



q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).

Theorem (H–Krenn–Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the
q-recursive sequence are allowed.

Clemens Heuberger University of Klagenfurt 8



q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).

Theorem (H–Krenn–Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the
q-recursive sequence are allowed.

Clemens Heuberger University of Klagenfurt 8



q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).

Theorem (H–Krenn–Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the
q-recursive sequence are allowed.

Clemens Heuberger University of Klagenfurt 8



q-Regular Sequences

Vector-valued sequence v : N0 → CD with

v(qn + r) = Arv(n)

for all 0 ≤ r < q and n ≥ 0.

Constants:

q ≥ 2, D ≥ 1: integers;

A0, . . . , Aq−1: D × D-matrices.

First component of v : q-regular sequence (Allouche–Shallit 1992).

Theorem (H–Krenn–Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the
q-recursive sequence are allowed.

Clemens Heuberger University of Klagenfurt 8



Minimality of Linear Representations
Given regular sequence x , find matrices A0, . . . , Ar , row vector
u, column vector w and vector valued sequence v of minimal
dimension D such that x(n) = uv(n), v(0) = w , and
v(qn + r) = Arv(n) for all n ≥ 0 and 0 ≤ r < q.

Necessary: A0w = w .

Necessary:

dim span

{(`−1∏
j=0

Anj

)
w

∣∣∣∣ 0 ≤ nj < q

}
= D.

Necessary:

dim span

{
u

(`−1∏
j=0

Anj

) ∣∣∣∣ 0 ≤ nj < q

}
= D.

These conditions are also sufficient (Schützenberger 1961;
Berstel–Reutenauer 2011; H.–Krenn–Lipnik 202?).

Implemented in SageMath.
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