

Prelude: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

Prelude: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

$$
s(n)=s(\lfloor n / 2\rfloor)+[n \text { is odd }]
$$

for $n \geq 0$ with $s(0)=0$.

Prelude: Binary Sum of Digits

- Binary expansion $n=\sum_{j \geq 0} \varepsilon_{j} 2^{j}$
- Sum of digits $s(n)=\sum_{j \geq 0} \varepsilon_{j}$

$$
s(n)=s(\lfloor n / 2\rfloor)+[n \text { is odd }]
$$

for $n \geq 0$ with $s(0)=0$.
In other words:

$$
\begin{aligned}
s(2 n) & =s(n), \\
s(2 n+1) & =s(n)+1
\end{aligned}
$$

for $n \geq 0$ with $s(0)=0$.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Number $M(n)$ of comparisons when sorting n elements:

$$
M(n)=M(\lceil n / 2\rceil)+M(\lfloor n / 2\rfloor)+n-1
$$

for $n \geq 1$ with $M(0)=M(1)=0$.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually \& recursively;
- Merge results.

Number $M(n)$ of comparisons when sorting n elements:

$$
M(n)=M(\lceil n / 2\rceil)+M(\lfloor n / 2\rfloor)+n-1
$$

for $n \geq 1$ with $M(0)=M(1)=0$.
In other words:

$$
\begin{aligned}
M(2 n) & =2 M(n)+2 n-1 \\
M(2 n+1) & =M(n)+M(n+1)+2 n
\end{aligned}
$$

for $n \geq 1$ with $M(0)=M(1)=0$.

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
00	0	2
11	1	2
010	0	3
101	1	3
1010	10	4
0110100110	0110	10

unbordered factor	length
ε	0
0	1
1	1
01	2
10	2
011	3
110	3
100	3
001	3

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
- exists non-empty word $v \neq w$
- v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
$t[5 \ldots 6]=00$	0	2
$t[1 \ldots 2]=11$	1	2
$t[3 \ldots 5]=010$	0	3
$t[2 \ldots 4]=101$	1	3
$t[2 \ldots 5]=1010$	10	4
$t[0 \ldots 9]=0110100110$	0110	10

unbordered factor	length
ε	0
$t[0 \ldots 0]=0$	1
$t[1 \ldots 1]=1$	1
$t[0 \ldots 1]=01$	2
$t[2 \ldots 3]=10$	2
$t[0 \ldots 2]=011$	3
$t[1 \ldots 3]=110$	3
$t[4 \ldots 6]=100$	3
$t[5 \ldots 7]=001$	3

Thue-Morse Sequence

$t=01101001100101101001011001101001 \ldots$

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)
exists unbordered factor of length n
$\Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1$
in Thue-Morse sequence

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)
exists unbordered factor of length n

$$
\Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1
$$

in Thue-Morse sequence

- number $f(n)$ of unbordered factors of length n in the Thue-Morse sequence

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(n)$	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor of length $n \quad \Longleftrightarrow \quad(n)_{2} \notin 1\left(01^{*} 0\right)^{*} 10^{*} 1$
in Thue-Morse sequence

- number $f(n)$ of unbordered factors of length n in the Thue-Morse sequence

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$f(n)$	1	2	2	4	2	4	6	0	4	4	4	4	12	0	4	4

Theorem (Goč-Mousavi-Shallit 2013)

- inequality $f(n) \leq n$ holds for all $n \geq 4$
- $f(n)=n$ infinitely often
- $\lim \sup _{n \geq 1} \frac{f(n)}{n}=1$

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(4 n) & =2 f(2 n) & & (n \geq 2) \\
f(4 n+1) & =f(2 n+1) & & (n \geq 0) \\
f(8 n+2) & =f(2 n+1)+f(4 n+3) & & (n \geq 1) \\
f(8 n+3) & =-f(2 n+1)+f(4 n+2) & & (n \geq 2) \\
f(8 n+6) & =-f(2 n+1)+f(4 n+2)+f(4 n+3) & & (n \geq 2) \\
f(8 n+7) & =2 f(2 n+1)+f(4 n+3) & & (n \geq 3)
\end{aligned}
$$

Theorem (Goč-Mousavi-Shallit 2013)

$f(n)$ satisfies recurrence relations above

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(8 n) & =2 f(4 n) & & (n \geq 1) \\
f(8 n+1) & =f(4 n+1) & & (n \geq 0) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) & & (n \geq 1) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) & & (n \geq 2) \\
f(8 n+4) & =2 f(4 n+2) & & (n \geq 1) \\
f(8 n+5) & =f(4 n+3) & & (n \geq 0) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) & & (n \geq 2) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3) & & (n \geq 3)
\end{aligned}
$$

Recurrence Relations

- number $f(n)$ of unbordered factors of length n in Thue-Morse sequence
- recurrence relations

$$
\begin{aligned}
f(8 n) & =2 f(4 n) & & (n \geq 1) \\
f(8 n+1) & =f(4 n+1) & & (n \geq 0) \\
f(8 n+2) & =f(4 n+1)+f(4 n+3) & & (n \geq 1) \\
f(8 n+3) & =-f(4 n+1)+f(4 n+2) & & (n \geq 2) \\
f(8 n+4) & =2 f(4 n+2) & & (n \geq 1) \\
f(8 n+5) & =f(4 n+3) & & (n \geq 0) \\
f(8 n+6) & =-f(4 n+1)+f(4 n+2)+f(4 n+3) & & (n \geq 2) \\
f(8 n+7) & =2 f(4 n+1)+f(4 n+3) & & (n \geq 3)
\end{aligned}
$$

- $f(n)$ is a 2-recursive sequence

q-Recursive Sequences

Sequence x with

$$
x\left(q^{M} n+r\right)=\sum_{\ell \leq k \leq u} c_{r, k} x\left(q^{m} n+k\right)
$$

for all $n \geq n_{0}$ and $0 \leq r<q^{M}$.

q-Recursive Sequences

Sequence x with

$$
x\left(q^{M} n+r\right)=\sum_{\ell \leq k \leq u} c_{r, k} x\left(q^{m} n+k\right)
$$

for all $n \geq n_{0}$ and $0 \leq r<q^{M}$.
Constants:

- $q \geq 2, M>m \geq 0, \ell \leq u, n_{0} \geq \max \left\{-\ell / q^{m}, 0\right\}$ integers
- $c_{s, k} \in \mathbb{C}$ for all $0 \leq s<q^{M}$ and $\ell \leq k \leq u$

q-Recursive Sequences

Sequence x with

$$
x\left(q^{M} n+r\right)=\sum_{\ell \leq k \leq u} c_{r, k} x\left(q^{m} n+k\right)
$$

for all $n \geq n_{0}$ and $0 \leq r<q^{M}$.
Constants:

- $q \geq 2, M>m \geq 0, \ell \leq u, n_{0} \geq \max \left\{-\ell / q^{m}, 0\right\}$ integers
- $c_{s, k} \in \mathbb{C}$ for all $0 \leq s<q^{M}$ and $\ell \leq k \leq u$
q-recursive sequence

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

First component of v : q-regular sequence (Allouche-Shallit 1992).

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

First component of v : q-regular sequence (Allouche-Shallit 1992).

Theorem (H-Krenn-Lipnik 2022)

Every q-recursive sequence is q-regular.

q-Regular Sequences

Vector-valued sequence $v: \mathbb{N}_{0} \rightarrow \mathbb{C}^{D}$ with

$$
v(q n+r)=A_{r} v(n)
$$

for all $0 \leq r<q$ and $n \geq 0$.
Constants:

- $q \geq 2, D \geq 1$: integers;
- $A_{0}, \ldots, A_{q-1}: D \times D$-matrices.

First component of v : q-regular sequence (Allouche-Shallit 1992).

Theorem (H-Krenn-Lipnik 2022)

Every q-recursive sequence is q-regular.
Regular sequences as inhomogeneities in the recurrence of the q-recursive sequence are allowed.

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.
- Necessary: $A_{0} w=w$.

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.
- Necessary: $A_{0} w=w$.
- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w \mid 0 \leq n_{j}<q\right\}=D
$$

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.
- Necessary: $A_{0} w=w$.
- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w \mid 0 \leq n_{j}<q\right\}=D
$$

- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) \mid 0 \leq n_{j}<q\right\}=D
$$

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.
- Necessary: $A_{0} w=w$.
- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w \mid 0 \leq n_{j}<q\right\}=D
$$

- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) \mid 0 \leq n_{j}<q\right\}=D
$$

- These conditions are also sufficient (Schützenberger 1961;

Berstel-Reutenauer 2011; H.-Krenn-Lipnik 202?).

Minimality of Linear Representations

- Given regular sequence x, find matrices A_{0}, \ldots, A_{r}, row vector u, column vector w and vector valued sequence v of minimal dimension D such that $x(n)=u v(n), v(0)=w$, and $v(q n+r)=A_{r} v(n)$ for all $n \geq 0$ and $0 \leq r<q$.
- Necessary: $A_{0} w=w$.
- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) w \mid 0 \leq n_{j}<q\right\}=D
$$

- Necessary:

$$
\operatorname{dim} \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1} A_{n_{j}}\right) \mid 0 \leq n_{j}<q\right\}=D
$$

- These conditions are also sufficient (Schützenberger 1961;

Berstel-Reutenauer 2011; H.-Krenn-Lipnik 202?).

- Implemented in SageMath.

