

INIVERSITÄT

Prelude: Binary Sum of Digits

- Binary expansion $n = \sum_{j \ge 0} \varepsilon_j 2^j$
- Sum of digits $s(n) = \sum_{j \geq 0} \varepsilon_j$

Prelude: Binary Sum of Digits

- Binary expansion $n = \sum_{j>0} \varepsilon_j 2^j$
- Sum of digits $s(n) = \sum_{j \geq 0} \varepsilon_j$

$$s(n) = s(\lfloor n/2 \rfloor) + [n \text{ is odd}]$$

for $n \ge 0$ with s(0) = 0.

Prelude: Binary Sum of Digits

- Binary expansion $n = \sum_{j>0} \varepsilon_j 2^j$
- Sum of digits $s(n) = \sum_{j \geq 0} \varepsilon_j$

$$s(n) = s(\lfloor n/2 \rfloor) + [n \text{ is odd}]$$

for $n \ge 0$ with s(0) = 0. In other words:

$$s(2n) = s(n),$$

$$s(2n+1) = s(n) + 1$$

for $n \ge 0$ with s(0) = 0.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually & recursively;
- Merge results.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually & recursively;
- Merge results.

Number M(n) of comparisons when sorting n elements:

$$M(n) = M(\lceil n/2 \rceil) + M(\lfloor n/2 \rfloor) + n - 1$$

for $n \ge 1$ with M(0) = M(1) = 0.

Prelude: Merge Sort

- Partition into two sets of (almost) equal size;
- Sort both parts individually & recursively;
- Merge results.

Number M(n) of comparisons when sorting n elements:

$$M(n) = M(\lceil n/2 \rceil) + M(\lfloor n/2 \rfloor) + n - 1$$

for $n \ge 1$ with M(0) = M(1) = 0. In other words:

$$M(2n) = 2M(n) + 2n - 1,$$

 $M(2n + 1) = M(n) + M(n + 1) + 2n$

for $n \ge 1$ with M(0) = M(1) = 0.

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
00	0	2
11	1	2
010	0	3
101	1	3
1010	10	4
0110100110	0110	10

unbordered factor	length
ε	0
0	1
1	1
01	2
10	2
011	3
110	3
100	3
001	3

(Un-)bordered Factors

(Un-)bordered

- word w bordered:
 - exists non-empty word $v \neq w$
 - v is prefix and suffix of w
- otherwise unbordered

bordered factor	border	length
t[56] = 00	0	2
$t[1 \dots 2] = 11$	1	2
t[35] = 010	0	3
t[24] = 101	1	3
t[25] = 1010	10	4
t[09] = 0110100110	0110	10

unbordered factor	length
ε	0
t[00] = 0	1
t[11] = 1	1
t[01] = 01	2
t[23] = 10	2
t[02] = 011	3
t[13] = 110	3
t[46] = 100	3
t[57] = 001	3

Thue-Morse Sequence

t = 01101001100101101001011001101001...

Number of Unbordered Factors

Theorem (Goč–Henshall–Shallit 2013)

exists unbordered factor of length $n \iff (n)_2 \notin 1(01^*0)^*10^*1$ in Thue–Morse sequence

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor of length $n \iff (n)_2 \notin 1(01^*0)^*10^*1$ in Thue–Morse sequence

• number f(n) of unbordered factors of length n in the Thue–Morse sequence

Number of Unbordered Factors

Theorem (Goč-Henshall-Shallit 2013)

exists unbordered factor of length $n \iff (n)_2 \notin 1(01^*0)^*10^*1$ in Thue–Morse sequence

 number f(n) of unbordered factors of length n in the Thue–Morse sequence

Theorem (Goč-Mousavi-Shallit 2013)

- inequality $f(n) \le n$ holds for all $n \ge 4$
- f(n) = n infinitely often
- $\limsup_{n\geq 1} \frac{f(n)}{n} = 1$

Recurrence Relations

 number f(n) of unbordered factors of length n in Thue–Morse sequence

f(8n+7) = 2f(2n+1) + f(4n+3)

recurrence relations

$$f(4n) = 2f(2n) \qquad (n \ge 2)$$

$$f(4n+1) = f(2n+1) \qquad (n \ge 0)$$

$$f(8n+2) = f(2n+1) + f(4n+3) \qquad (n \ge 1)$$

$$f(8n+3) = -f(2n+1) + f(4n+2) \qquad (n \ge 2)$$

$$f(8n+6) = -f(2n+1) + f(4n+2) + f(4n+3) \qquad (n \ge 2)$$

Theorem (Goč-Mousavi-Shallit 2013)

(n > 3)

f(n) satisfies recurrence relations above

Recurrence Relations

- number f(n) of unbordered factors of length n in Thue–Morse sequence
- recurrence relations

$$f(8n) = 2f(4n) (n \ge 1)$$

$$f(8n+1) = f(4n+1) (n > 0)$$

$$f(8n+2) = f(4n+1) + f(4n+3) \qquad (n \ge 1)$$

$$f(8n+3) = -f(4n+1) + f(4n+2) \qquad (n \ge 2)$$

$$f(8n+4) = 2f(4n+2) (n \ge 1)$$

$$f(8n+5) = f(4n+3) (n \ge 0)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3) \qquad (n \ge 2)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3) \qquad (n \ge 3)$$

Recurrence Relations

- number f(n) of unbordered factors of length n in Thue–Morse sequence
- recurrence relations

$$f(8n) = 2f(4n) \qquad (n \ge 1)$$

$$f(8n+1) = f(4n+1) \qquad (n \ge 0)$$

$$f(8n+2) = f(4n+1) + f(4n+3) \qquad (n \ge 1)$$

$$f(8n+3) = -f(4n+1) + f(4n+2) \qquad (n \ge 2)$$

$$f(8n+4) = 2f(4n+2) \qquad (n \ge 1)$$

$$f(8n+5) = f(4n+3) \qquad (n \ge 0)$$

$$f(8n+6) = -f(4n+1) + f(4n+2) + f(4n+3) \qquad (n \ge 2)$$

$$f(8n+7) = 2f(4n+1) + f(4n+3) \qquad (n > 3)$$

• f(n) is a 2-recursive sequence

Sequence x with

$$x(q^{M}n+r) = \sum_{\ell \leq k \leq u} c_{r,k} x(q^{m}n+k)$$

for all $n \ge n_0$ and $0 \le r < q^M$.

Sequence x with

$$x(q^{M}n+r) = \sum_{\ell \leq k \leq u} c_{r,k} x(q^{m}n+k)$$

for all $n \ge n_0$ and $0 \le r < q^M$.

Constants:

- $q \ge 2$, $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max\{-\ell/q^m, 0\}$ integers
- $c_{s,k} \in \mathbb{C}$ for all $0 \leq s < q^M$ and $\ell \leq k \leq u$

Sequence x with

$$x(q^{M}n+r) = \sum_{\ell \leq k \leq u} c_{r,k} x(q^{m}n+k)$$

for all $n \ge n_0$ and $0 \le r < q^M$.

Constants:

- $q \ge 2$, $M > m \ge 0$, $\ell \le u$, $n_0 \ge \max\{-\ell/q^m, 0\}$ integers
- $c_{s,k} \in \mathbb{C}$ for all $0 \leq s < q^M$ and $\ell \leq k \leq u$

q-recursive sequence

Vector-valued sequence $\mathbf{v} \colon \mathbb{N}_0 \to \mathbb{C}^D$ with

$$v(qn+r)=A_rv(n)$$

for all $0 \le r < q$ and $n \ge 0$.

Vector-valued sequence $\mathbf{v} \colon \mathbb{N}_0 \to \mathbb{C}^D$ with

$$v(qn+r)=A_rv(n)$$

for all $0 \le r < q$ and $n \ge 0$.

Constants:

- $q \ge 2$, $D \ge 1$: integers;
- A_0, \ldots, A_{q-1} : $D \times D$ -matrices.

Vector-valued sequence $\mathbf{v} \colon \mathbb{N}_0 \to \mathbb{C}^D$ with

$$v(qn+r)=A_rv(n)$$

for all $0 \le r < q$ and $n \ge 0$.

Constants:

- $q \ge 2$, $D \ge 1$: integers;
- A_0, \ldots, A_{q-1} : $D \times D$ -matrices.

First component of v: q-regular sequence (Allouche-Shallit 1992).

Vector-valued sequence $\mathbf{v} \colon \mathbb{N}_0 \to \mathbb{C}^D$ with

$$v(qn+r)=A_rv(n)$$

for all $0 \le r < q$ and $n \ge 0$.

Constants:

- $q \ge 2$, $D \ge 1$: integers;
- A_0, \ldots, A_{q-1} : $D \times D$ -matrices.

First component of v: q-regular sequence (Allouche-Shallit 1992).

Theorem (H-Krenn-Lipnik 2022)

Every q-recursive sequence is q-regular.

Vector-valued sequence $\mathbf{v} \colon \mathbb{N}_0 \to \mathbb{C}^D$ with

$$v(qn+r)=A_rv(n)$$

for all $0 \le r < q$ and $n \ge 0$.

Constants:

- $q \ge 2$, $D \ge 1$: integers;
- A_0, \ldots, A_{q-1} : $D \times D$ -matrices.

First component of v: q-regular sequence (Allouche-Shallit 1992).

Theorem (H-Krenn-Lipnik 2022)

Every q-recursive sequence is q-regular.

Regular sequences as inhomogeneities in the recurrence of the q-recursive sequence are allowed.

• Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_r v(n)$ for all $n \ge 0$ and $0 \le r < q$.

- Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_r v(n)$ for all $n \ge 0$ and $0 \le r < q$.
- Necessary: $A_0 w = w$.

- Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_r v(n)$ for all $n \ge 0$ and $0 \le r < q$.
- Necessary: $A_0 w = w$.
- Necessary:

$$\dim \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_j}\right) w \mid 0 \le n_j < q\right\} = D.$$

- Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_r v(n)$ for all $n \ge 0$ and $0 \le r < q$.
- Necessary: $A_0 w = w$.
- Necessary:

$$\dim \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_j}\right) w \mid 0 \le n_j < q\right\} = D.$$

• Necessary:

$$\dim \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1}A_{n_j}\right) \mid 0 \le n_j < q\right\} = D.$$

- Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_rv(n)$ for all $n \ge 0$ and $0 \le r < q$.
- Necessary: $A_0 w = w$.
- Necessary:

$$\dim \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_j}\right) w \mid 0 \le n_j < q\right\} = D.$$

• Necessary:

$$\dim \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1}A_{n_j}\right) \mid 0 \le n_j < q\right\} = D.$$

• These conditions are also sufficient (Schützenberger 1961; Berstel–Reutenauer 2011; H.–Krenn–Lipnik 202?).

- Given regular sequence x, find matrices A_0, \ldots, A_r , row vector u, column vector w and vector valued sequence v of minimal dimension D such that x(n) = uv(n), v(0) = w, and $v(qn + r) = A_r v(n)$ for all $n \ge 0$ and $0 \le r < q$.
- Necessary: $A_0 w = w$.
- Necessary:

$$\dim \operatorname{span}\left\{\left(\prod_{j=0}^{\ell-1} A_{n_j}\right) w \mid 0 \le n_j < q\right\} = D.$$

Necessary:

$$\dim \operatorname{span}\left\{u\left(\prod_{j=0}^{\ell-1}A_{n_j}\right) \mid 0 \le n_j < q\right\} = D.$$

- These conditions are also sufficient (Schützenberger 1961; Berstel-Reutenauer 2011; H.-Krenn-Lipnik 202?).
- Implemented in SageMath.