# Forays Beyond Dendricity

Herman Goulet-Ouellet

Numeration 2023, ULiège Belgium, 21 May 2023



INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE



#### · \_ · \_ · \_ - Part 1 \_ · \_ \_ · \_ \_

# **Sturmian**

**Morse & Hedlund, 1940**. Words with factor complexity n + 1 for all n are precisely the mechanical words.

**Morse & Hedlund, 1940**. Words with factor complexity n + 1 for all n are precisely the mechanical words.

$$T: x \mapsto \{x + e^{-1}\}, \qquad I_{\emptyset} = [0, 1 - e^{-1}], \qquad I_{1} = [1 - e^{-1}, 1].$$

$$e^{-1} \qquad \qquad T^{2}e^{-1} \qquad \text{Standard Sturmian word of slope } e^{-1}.$$

$$s = 010$$

**Morse & Hedlund, 1940**. Words with factor complexity n + 1 for all n are precisely the mechanical words.



**Rauzy graph**: directed graph  $\Gamma_n(\mathbf{w})$  with vertex set  $fac(\mathbf{w}) \cap A^n$ . There is an edge  $u \xrightarrow{b} v$  when  $ub = av \in fac(w) \cap A^{n+1}$ . **Rauzy graph**: directed graph  $\Gamma_n(\mathbf{w})$  with vertex set  $fac(\mathbf{w}) \cap A^n$ . There is an edge  $u \xrightarrow{b} v$  when  $ub = av \in fac(w) \cap A^{n+1}$ .



 $\Gamma_4(\mathbf{S})$ 

 $s = 010010010010010010 \cdots$ 

# **Special factors**

- Left special.  $au \in fac(\mathbf{w})$  for at least two  $a \in A$ .
- **Right special**.  $ub \in fac(\mathbf{w})$  for *at least two*  $b \in A$ .
- **Bispecial**. Both left and right special.

# **Special factors**

- Left special.  $au \in fac(\mathbf{w})$  for at least two  $a \in A$ .
- **Right special**.  $ub \in fac(\mathbf{w})$  for *at least two*  $b \in A$ .
- Bispecial. Both left and right special.



left special only

right special only

bispecial

### **Special factors**

- Left special.  $au \in fac(\mathbf{w})$  for at least two  $a \in A$ .
- **Right special**.  $ub \in fac(\mathbf{w})$  for *at least two*  $b \in A$ .
- Bispecial. Both left and right special.



**Collapsing**. Map  $\Gamma_{n+1} \to \Gamma_n$  "erasing first letters", i.e.  $ax \mapsto x$ .

**Collapsing**. Map  $\Gamma_{n+1} \to \Gamma_n$  "erasing first letters", i.e.  $ax \mapsto x$ . It is injective everywhere *except on left special factors*. **Collapsing**. Map  $\Gamma_{n+1} \to \Gamma_n$  "erasing first letters", i.e.  $ax \mapsto x$ . It is injective everywhere *except on left special factors*. The inverse of collapsing consists of '**fentes**' and '**éclatements**'. **Collapsing.** Map  $\Gamma_{n+1} \rightarrow \Gamma_n$  "erasing first letters", i.e.  $ax \mapsto x$ . It is injective everywhere *except on left special factors*. The inverse of collapsing consists of '**fentes**' and '**éclatements**'.



**Collapsing**. Map  $\Gamma_{n+1} \to \Gamma_n$  "erasing first letters", i.e.  $ax \mapsto x$ . It is injective everywhere *except on left special factors*. The inverse of collapsing consists of '**fentes**' and '**éclatements**'.



'Fentes' do not change the structure of the Rauzy graph.

**Lemma**. Sturmian words have exactly 1 left special factor  $G_n$  and one right special factor  $D_n$  for each  $n \in \mathbb{N}$ .

**Lemma**. Sturmian words have exactly 1 left special factor  $G_n$  and one right special factor  $D_n$  for each  $n \in \mathbb{N}$ .



 $U_n$  and  $V_n :=$  return words to  $D_n$ .

#### Sturmian 'éclatements'



'Éclatements'  $\rightleftharpoons$  S-adic expansion.



#### · \_ · \_ · \_ - Part 2 \_ · \_ \_ · \_ \_

#### **Arnoux-Rauzy**

#### Arnoux-Rauzy words

Arnoux & Rauzy, 1991. Generalized Sturmian words.

**Arnoux–Rauzy word**. Recurrent word  $\mathbf{w} \in \{0, 1, 2\}^{\mathbb{N}}$  with for all *n* 

- exactly one left special factor  $G_n$ , extended by 3 letters;
- exactly one right special word  $D_n$ , extended by 3 letters.

#### Arnoux-Rauzy words

Arnoux & Rauzy, 1991. Generalized Sturmian words.

**Arnoux–Rauzy word**. Recurrent word  $\mathbf{w} \in \{0, 1, 2\}^{\mathbb{N}}$  with for all *n* 

- exactly one left special factor *G<sub>n</sub>*, extended by 3 letters;
- exactly one right special word  $D_n$ , extended by 3 letters.



 $U_n$ ,  $V_n$  and  $W_n :=$  return words to  $D_n$ .

#### Arnoux-Rauzy 'éclatements'



'Éclatements'  $\rightleftharpoons$  S-adic expansion.



#### · \_ · \_ · \_ - Part 3 \_ · \_ \_ · \_ \_

Dendric

**Extension graphs**. Undirected bipartite graph  $E_w(u)$  over the left and right extensions of u in w.

There is an edge a - b if  $aub \in fac(\mathbf{w})$ .

**Extension graphs**. Undirected bipartite graph  $E_w(u)$  over the left and right extensions of u in w.

There is an edge a - b if  $aub \in fac(\mathbf{w})$ .



 $\mathbf{s} = 01001001010010010 \cdots$ 

**000** ∉ fac(**s**)

Berthé et al., 2015: generalized Arnoux–Rauzy.Dendric word: all extension graphs are trees.

- Arnoux–Rauzy  $\stackrel{\Leftarrow}{\Longrightarrow}$  Dendric.
- Dendric  $\stackrel{\notin}{\Longrightarrow}$  Factor complexity (k-1)n+1.

Let **d** =  $0210210100210\cdots$  be the fixed point of the primitive morphism  $\sigma: 0 \mapsto 0210, 1 \mapsto 10, 2 \mapsto 210$ .



## Dendric 'éclatement'

'Éclatement' with rule  $(U_{n+1}, V_{n+1}, W_{n+1}) = (U_n V_n, V_n, W_n)$ .



'Éclatements'  $\rightleftharpoons$  S-adic expansion.

# Dendric 'éclatement'

'Éclatement' with rule  $(U_{n+1}, V_{n+1}, W_{n+1}) = (U_n V_n, V_n, W_n)$ .



'Éclatements'  $\rightleftharpoons$  S-adic expansion.

Gheeraert & Leroy, 2022. S-adic characterization of dendricity.

**Local principle**. 'Éclatements' are locally determined by extension graphs.

**Local principle**. 'Éclatements' are locally determined by extension graphs.



Fix an infinite word **w** on *k* letters.

**Free group**.  $F_k :=$  the free group over *k* elements.

Fix an infinite word  $\mathbf{w}$  on k letters.

**Free group**.  $F_k :=$  the free group over *k* elements.

**Rauzy groups.**  $H_n(\mathbf{w}) \coloneqq$  subgroup of  $F_k$  generated by loops in  $\Gamma_n(\mathbf{w})$  based at some fixed  $v_0$  (independent up to conjugacy).

Fix an infinite word **w** on *k* letters.

**Free group**.  $F_k :=$  the free group over *k* elements.

**Rauzy groups.**  $H_n(\mathbf{w}) \coloneqq$  subgroup of  $F_k$  generated by loops in  $\Gamma_n(\mathbf{w})$  based at some fixed  $v_0$  (independent up to conjugacy).



$$x = (10)(0210)^{-1}(210) = 1$$
$$H_2(\mathbf{d}) = \langle 10, 0210, 210 \rangle = F_3$$

**Berthé et al., 2015.** Let **w** be a recurrent dendric word on *k* letters.

- 1. For every n,  $H_n(\mathbf{w}) = F_k$ .
- 2. Sets of return words in **w** form bases of  $F_k$ .

**Berthé et al., 2015**. Let **w** be a recurrent dendric word on *k* letters.

- 1. For every n,  $H_n(\mathbf{w}) = F_k$ .
- 2. Sets of return words in **w** form bases of  $F_k$ .

**Combinatorial stability**. Dendric words have constant number of return words (= size of the alphabet).

**Berthé et al., 2015.** Let **w** be a recurrent dendric word on *k* letters.

- 1. For every n,  $H_n(\mathbf{w}) = F_k$ .
- 2. Sets of return words in **w** form bases of  $F_k$ .

**Combinatorial stability**. Dendric words have constant number of return words (= size of the alphabet).

Algebraic stability. When all extension graphs are connected, collapsing maps  $\implies$  Rauzy group *equalities*.

$$\cdots \longrightarrow \Gamma_3(\mathbf{w}) \longrightarrow \Gamma_2(\mathbf{w}) \longrightarrow \Gamma_1(\mathbf{w}) \longrightarrow \Gamma_0(\mathbf{w}) \cdots$$
$$\cdots = H_3(\mathbf{w}) = H_2(\mathbf{w}) = H_1(\mathbf{w}) = H_0(\mathbf{w}) \cdots$$

#### Path between left extensions $a, b \in E_{\mathbf{w}}(u)$ gives a trivial link $au \rightarrow bu$ inside $\Gamma_n(\mathbf{w})$ .





#### · \_ · \_ · \_ - Part 4 \_ · \_ \_ · \_ \_

#### Suffix-connected

# A non-dendric example

**G.-O.**, **2022**. Let  $\mathbf{c} = 000100010001020\cdots$  be the fixed point of the primitive morphism  $\sigma: 0 \mapsto 0001, 1 \mapsto 02, 2 \mapsto 001$ .

**G.-O., 2022.** Let  $\mathbf{c} = 000100010001020\cdots$  be the fixed point of the primitive morphism  $\sigma: 0 \mapsto 0001, 1 \mapsto 02, 2 \mapsto 001$ .

- 1.  $H_n(\mathbf{c}) = F_3$  for all n.
- 2. Sets of return words have cardinality 3 or 4.
- 3. **c** has factor complexity  $\neq 2n + 1$ .

**G.-O.**, **2022**. Let  $\mathbf{c} = 000100010001020\cdots$  be the fixed point of the primitive morphism  $\sigma: 0 \mapsto 0001, 1 \mapsto 02, 2 \mapsto 001$ .

- 1.  $H_n(\mathbf{c}) = F_3$  for all n.
- 2. Sets of return words have cardinality 3 or 4.
- 3. **c** has factor complexity  $\neq 2n + 1$ .

 $z_0\coloneqq \texttt{001000100010},\quad z_1\coloneqq \sigma(z_0)\texttt{00},\quad z_2\coloneqq \sigma(z_1)\texttt{0},\quad z_3\coloneqq \sigma(z_2)\texttt{00}.$ 

| 1 0                   | 1 1                   | 1 0                            | 1 1                   |
|-----------------------|-----------------------|--------------------------------|-----------------------|
| 0 2                   | 2 0                   | 2 2                            | 2 0                   |
| $E_{\mathbf{c}}(z_0)$ | $E_{\mathbf{c}}(z_1)$ | $E_{\mathbf{c}}(\mathbf{Z}_2)$ | $E_{\mathbf{c}}(Z_3)$ |

**Suffix extension graphs**. Extension graphs of suffixes with respect to *longer* extensions.

**Suffix extension graphs**. Extension graphs of suffixes with respect to *longer* extensions.



**Suffix extension graphs**. Extension graphs of suffixes with respect to *longer* extensions.



**Suffix-connected.** Left extensions of every word  $u \in fac(\mathbf{w})$  are linked inside *some* suffix extension graph of u.

**Lemma 1:**  $H_n(\mathbf{w}) = H_{n-1}(\mathbf{w}) \iff$  left extensions of left special words are trivially linked in  $\Gamma_n(\mathbf{w})$ .

**Lemma 1:**  $H_n(\mathbf{w}) = H_{n-1}(\mathbf{w}) \iff$  left extensions of left special words are trivially linked in  $\Gamma_n(\mathbf{w})$ .

**Lemma 2**: Path in suffix extension graph  $\rightarrow$  trivially linked left extensions.

**Lemma 1:**  $H_n(\mathbf{w}) = H_{n-1}(\mathbf{w}) \iff$  left extensions of left special words are trivially linked in  $\Gamma_n(\mathbf{w})$ .

**Lemma 2**: Path in suffix extension graph  $\rightsquigarrow$  trivially linked left extensions.



**G.-O.**, **2022**. Let **w** be a uniformly recurrent suffix-connected word on *k* letters.

- 1. For every n,  $H_n(\mathbf{w}) = F_k$ .
- 2. Sets of return words in **w** generate  $F_k$ .



- P. Arnoux & G. Rauzy (1991). Représentation géométrique de suites de complexité 2n + 1. Bull. Soc. Math. Fr., vol. 119(2), pp. 199–215.
- V. Berthé et al. (2015). Acyclic, Connected and Tree Sets. Monatsh. Math., vol. 176(4), pp. 521–550.
- F. Gheeraert & J. Leroy (2022). *S*-adic characterization of minimal dendric shifts. arXiv preprint.
- H. Goulet-Ouellet (2022). **Suffix-connected languages.** Theoret. Comput. Sci., vol. 923, pp. 126–143.
- M. Morse & G. A. Hedlund (1940). Symbolic dynamics II. Sturmian trajectories. Am. J. Math., vol. 62(1), pp. 1–42.