Numeration systems with a Delone spectrum

De-Jun Feng

The Chinese University of Hong Kong
Numeration 2023
May 22-26, 2023, Liege, Belgium
(Based on joint work with Ching-Yin Chan)

Supported in part by the HKRGC GRF grant

Introduction

Let $q>1$ be a real number, and D a finite set of non-negative real numbers with $0 \in D$. Write

$$
X_{D}(q):=\left\{\sum_{i=0}^{n} a_{i} q^{i}: a_{i} \in D, n=0,1, \ldots\right\}
$$

Let $0=x_{0}<x_{1}<x_{2}<\cdots$ be all the elements in $X_{D}(q)$.
Defintion. $X_{D}(q)$ is said to be a Delone set in $(0, \infty)$ if $\exists c_{1}, c_{2}>0$ such that

$$
c_{1} \leq x_{n+1}-x_{n} \leq c_{2}, \quad n=0,1, \ldots
$$

Main question in consideration

We will consider the following question:
Question A: For which pair (q, D) is the set $X_{D}(q)$ a Delone set in $(0, \infty)$?

Connection to a project by Erdős, Joó and Komornik

Question A is closely related to a project proposed by Erdös, Joó and Komornik in the last 90 's. For $m \in \mathbb{N}$ and $q>1$, set

$$
X_{m}(q)=\left\{\sum_{i=0}^{n} \epsilon_{i} q^{i}: \epsilon_{i} \in\{0,1, \ldots, m\}, n=0,1, \ldots\right\} .
$$

Clearly $X_{m}(q)=X_{D}(q)$ with $D=\{0,1, \ldots, m\}$. Rearrange the points of $X_{m}(q)$ into an increasing sequence:

$$
0=x_{0}(q, m)<x_{1}(q, m)<x_{2}(q, m)<\cdots .
$$

Denote

$$
\begin{aligned}
& \ell_{m}(q)=\liminf _{n \rightarrow \infty}\left(x_{n+1}(q, m)-x_{n}(q, m)\right), \\
& L_{m}(q)=\limsup _{n \rightarrow \infty}\left(x_{n+1}(q, m)-x_{n}(q, m)\right) .
\end{aligned}
$$

Question by Erdös, Joó and Komornik: When $\ell_{m}(q)=0$? when $L_{m}(q)=0$?

Connection to a project by Erdős, Joó and Komornik

- Clearly, $X_{m}(q)$ is a Delone set $\Longleftrightarrow 0<\ell_{m}(q) \leq L_{m}(q)<\infty$.
- (Drobot 1973) $\ell_{m}(q)=0 \Longleftrightarrow X_{m}(q)-X_{m}(q)$ is dense in \mathbb{R}.
- A simple fact: $L_{m}(q)<\infty \Longleftrightarrow q \leq m+1$.
(Erdős-Joó-Komornik 1990)
- It is well known that $\ell_{m}(q)>0$ in the following two cases: q is a Pisot number (Garsia 1962), or $q \geq m+1$ (Erdős and Komornik 1998);
- Recall that a Pisot number is an algebraic integer >1 all of whose conjugates have modulus <1. e.g. $(\sqrt{5}+1) / 2$ is a Pisot number, whose conjugate $=(1-\sqrt{5}) / 2 \approx-0.618 \ldots$;

Connection to a project by Erdős-Joó and Komornik

We include a brief proof for the fact that $\ell_{m}(q)>0$ if q is a Pisot number or $q \geq m+1$.

First assume that q is a Pisot number. Denote by q_{1}, \ldots, q_{d} the algebraic conjugates of q. Then $\rho:=\max _{1 \leq j \leq d}\left|q_{j}\right|<1$. Let $P(x)=\sum_{i=0}^{n} \epsilon_{i} x^{i}$ be a polynomial with coefficients in $\{0, \pm 1, \ldots, \pm m\}$. Suppose that $P(q) \neq 0$. Then $P\left(q_{j}\right) \neq 0$ for $1 \leq j \leq d$. Hence $P(q) \prod_{j=1}^{d} P\left(q_{j}\right)$ is a non-zero integer.
Therefore

$$
|P(q)| \geq \prod_{j=1}^{d} \frac{1}{\left|P\left(q_{j}\right)\right|} \geq\left(\frac{1}{\sum_{i=0}^{n} m \rho^{i}}\right)^{d}>m^{-d}(1-\rho)^{d}
$$

It follows that $\ell_{m}(q) \geq m^{-d}(1-\rho)^{d}$.

Next assume that $q \geq m+1$. Then for any $n \in \mathbb{N}$,

$$
q^{n}-\sum_{i=0}^{n-1} m q^{i}=\frac{q^{n}(q-1-m)+m}{q-1} \geq \frac{(q-1-m)+m}{q-1}=1
$$

It follows that $|P(q)| \geq 1$ for any polynomial P with degree ≥ 1 and coefficients in $\{0, \pm 1, \ldots, \pm m\}$. Hence $\ell_{m}(q) \geq 1$.

Connection to a project by Erdős, Joó and Komornik

We have seen that $\ell_{m}(q)>0$ if q is Pisot or $q \geq m+1$. In 1998, Erdős, Joó and Komornik raised the following

Question: whether or not $\ell_{m}(q)=0$ for any non-Pisot number $q \in(1, m+1)$?

Connection to a project by Erdős, Joó and Komornik

Previous partial results on $\ell_{m}(q)$ before 2013

- (Drobot, 1973) If $q \in(1, m+1)$ does not satisfy an algebraic equation with coefficients $0, \pm 1, \ldots, \pm m$, then $\ell_{m}(q)=0$.
- (Bugeaud, 1996) if q is not a Pisot number, then $\ell_{m}(q)=0$ when m is sufficiently enough.
- (Erdös and Komornik, 1998) $\ell_{m}(q)=0$ if q is not a Pisot number and $m \geq\left\lceil q-q^{-1}\right\rceil+\lceil q-1\rceil$, where $\lceil x\rceil$ denotes the smallest integer $\geq x$.
- (Sidorov and Solomyak, 2011) if $q \in(1, m+1)$ and q is not a Perron number, then $\ell_{m}(q)=0$. Recall that an algebraic integer $q>1$ is called a Perron number if each of its conjugates is less than q in modulus.

Connection to a project by Erdős, Joó and Komornik

Theorem (Akiyama-Komornik 2013, F. 2016)

$\ell_{m}(q)=0 \Longleftrightarrow q$ is a non-Pisot number in $(1, m+1)$.

Remark: Let $q \in(1, m+1)$.

- Akiyama-Komornik 2013: $X_{m}(q)-X_{m}(q)$ has no finite accumulation pts $\Longleftrightarrow q$ is Pisot.
- F. 2016:
$\ell_{m}(q)>0 \Longleftrightarrow X_{m}(q)-X_{m}(q)$ has no finite accumulation pts.

Corollary (Akiyama-Komornik 2013, F. 2016)

$X_{m}(q)$ is a Delone set in $[0, \infty) \Longleftrightarrow q$ is a Pisot number in $(1, m+1)$.

Hence Question A (i.e. when $X_{D}(q)$ is Delone) has been well understood in the case when $D=\{0,1, \ldots, m\}$.

Q: what can we say about the other cases that $D \neq\{0,1, \ldots, m\}$?

Remark: For each $c>0, X_{c D}(q)=c X_{D}(q)$. Hence

$$
X_{D}(q) \text { is Delone } \Longleftrightarrow X_{c D}(q) \text { is Delone. }
$$

Question A in the setting of IFS.

- Multiplying D by a constant if necessary, we may assume that

$$
0=a_{1}<a_{2}<\ldots<a_{m}=1-q^{-1}
$$

are the elements of D.

- Consider the iterated function system

$$
\Phi=\left\{\phi_{i}(x)=x / q+a_{i}\right\}_{i=1}^{m} .
$$

Let K be the attractor of Φ, i.e., K is the unique nonempty compact such that

$$
K=\bigcup_{i=1}^{m} \phi_{i}(K)
$$

Question A in the setting of IFS.

It is easy to see that $K \subset[0,1]$ and $0,1 \in K$.
By definition, $X_{D}(q)$ is Delone if and only if

- $K=[0,1]$;
- Φ satisfies the weak separation condition, i.e. 0 is not an accumulation point of $X_{D}(q)-X_{D}(q)$.

By [F. 2016], if $K=[0,1]$ then
Φ satisfies the weak separation condition $\Longleftrightarrow \Phi$ satisfies the finite type condition (i.e. $X_{D}(q)-X_{D}(q)$ has no finite accumulation points).

Question A: Charaterize (q, D) so that the IFS $\Phi=\{x / q+a\}_{a \in D}$ satisfies the finite type condition, and has $[0,1]$ as its attractor.

Question A in the setting of IFS.

Let $q>1$ and $D=\left\{a_{i}\right\}{ }_{i=1}^{m}$ with

$$
0=a_{1}<a_{2}<\cdots<a_{m}=1-q^{-1}
$$

An easy fact:

$$
K=[0,1] \Longleftrightarrow a_{i+1}-a_{i} \leq q^{-1} \text { for all } i=1, \ldots, m-1
$$

Our results: a necessary condition

From now on we always assume that $q>1$ and $D=\left\{a_{i}\right\}_{i=1}^{m}$ satisfies

$$
\begin{aligned}
& 0=a_{1}<a_{2}<\cdots<a_{m}=1-q^{-1} \text { and } \\
& a_{i+1}-a_{i} \leq q^{-1} \quad \text { for all } i=1, \ldots, m-1
\end{aligned}
$$

Theorem

Suppose that $X_{D}(q)$ is a Delone set in $[0, \infty)$. Then q is a Perron number, and $a_{i} \in \mathbb{Q}(q)$.

Recall that a Perron number is a positive algebraic integer λ whose algebraic conjugates are strictly less than λ in modulus.

Idea of the proof: build suitable substitutions by using the finite type condition of IFS, and to improve a result of [F. 2003].

A sufficient condition: If q is Pisot and $a_{i} \in \mathbb{Q}(q)$ for all i, then $X_{D}(q)$ is Delone in $[0, \infty)$.

The proof is similar to that for the case when $D=\{0,1, \ldots, m\}$.
Similar to the question of Erdős-Joó-Komornik, one may ask
Question: Under our general assumptions on (q, D), do we always have the implication:

$$
X_{D}(q) \text { is Delone in }[0, \infty) \Longrightarrow q \text { is Pisot? }
$$

Our results

Theorem

- Suppose that $2 \leq \# D \leq 4$ and $X_{D}(q)$ is Delone in $[0, \infty)$. Then q is Pisot.
- For each $m \geq 5$, there exists (q, D) with $\# D=m$ such that q is not Pisot, but $X_{D}(q)$ is Delone in $[0, \infty)$.

Our results

Theorem

Suppose that $X_{D}(q)$ is Delone in $[0, \infty)$. If one of the following holds:

- $c D \subset \mathbb{Q}$ for some $c>0$, or
- $a_{i+1}-a_{i} \leq 1 /(2 q)$ for all i,
then q is Pisot.

Our example

Below we give an examples of (q, D) with $\# D=5$ such that q is not Pisot but $X_{D}(q)$ is Delone.

Example

Let $q \approx 4.83442$ be the largest root of $x^{5}-4 x^{4}-3 x^{3}-4 x^{2}-4 x-4$. Let $D=\left\{a_{i}\right\}_{i=1}^{5}$ be given by

a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
0	$\frac{q^{2}-1}{q\left(q^{2}+1\right)}$	$\frac{q-1}{2 q}$	$\frac{q^{2}-2 q+1}{q^{2}+1}$	$\frac{q-1}{q}$

Then $X_{D}(q)$ is Delone. In this example, q is non-Pisot and non-Salem.

The conjugates of $q \approx 0.28501 \pm 0.97678 i,-0.70222 \pm 0.55321 i$

Thank you for your attention !!!

