Numeration systems with a Delone spectrum

De-Jun Feng

The Chinese University of Hong Kong

Numeration 2023 May 22-26, 2023, Liege, Belgium

(Based on joint work with Ching-Yin Chan)

Supported in part by the HKRGC GRF grant

 Let q > 1 be a real number, and D a finite set of non-negative real numbers with $0 \in D$. Write

$$X_D(q) := \left\{ \sum_{i=0}^n a_i q^i : a_i \in D, n = 0, 1, \ldots
ight\}.$$

Let $0 = x_0 < x_1 < x_2 < \cdots$ be all the elements in $X_D(q)$.

Definition. $X_D(q)$ is said to be a Delone set in $(0,\infty)$ if $\exists c_1, c_2 > 0$ such that

$$c_1 \leq x_{n+1} - x_n \leq c_2, \qquad n = 0, 1, \ldots$$

We will consider the following question:

Question A: For which pair (q, D) is the set $X_D(q)$ a Delone set in $(0, \infty)$?

Question A is closely related to a project proposed by Erdös, Joó and Komornik in the last 90's. For $m \in \mathbb{N}$ and q > 1, set

$$X_m(q) = \left\{\sum_{i=0}^n \epsilon_i q^i : \epsilon_i \in \{0, 1, \ldots, m\}, n = 0, 1, \ldots\right\}.$$

Clearly $X_m(q) = X_D(q)$ with $D = \{0, 1, ..., m\}$. Rearrange the points of $X_m(q)$ into an increasing sequence:

$$0 = x_0(q, m) < x_1(q, m) < x_2(q, m) < \cdots$$

Denote

$$\ell_m(q) = \liminf_{n \to \infty} (x_{n+1}(q, m) - x_n(q, m)),$$

$$L_m(q) = \limsup_{n \to \infty} (x_{n+1}(q, m) - x_n(q, m)).$$

Question by Erdős, Joó and Komornik: When $\ell_m(q) = 0$? when $L_m(q) = 0$?.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

- Clearly, $X_m(q)$ is a Delone set $\iff 0 < \ell_m(q) \le L_m(q) < \infty$.
- (Drobot 1973) $\ell_m(q) = 0 \iff X_m(q) X_m(q)$ is dense in \mathbb{R} .
- A simple fact: $L_m(q) < \infty \iff q \le m+1$. (Erdős-Joó-Komornik 1990)
- It is well known that $\ell_m(q) > 0$ in the following two cases: q is a Pisot number (Garsia 1962), or $q \ge m+1$ (Erdős and Komornik 1998);
- Recall that a **Pisot number** is an algebraic integer > 1 all of whose conjugates have modulus < 1. e.g. (√5 + 1)/2 is a Pisot number, whose conjugate = (1 − √5)/2 ≈ −0.618...;

We include a brief proof for the fact that $\ell_m(q) > 0$ if q is a Pisot number or $q \ge m + 1$.

First assume that q is a Pisot number. Denote by q_1, \ldots, q_d the algebraic conjugates of q. Then $\rho := \max_{1 \le j \le d} |q_j| < 1$. Let $P(x) = \sum_{i=0}^{n} \epsilon_i x^i$ be a polynomial with coefficients in $\{0, \pm 1, \ldots, \pm m\}$. Suppose that $P(q) \ne 0$. Then $P(q_j) \ne 0$ for $1 \le j \le d$. Hence $P(q) \prod_{j=1}^{d} P(q_j)$ is a non-zero integer. Therefore

$$|P(q)| \ge \prod_{j=1}^d \frac{1}{|P(q_j)|} \ge \left(\frac{1}{\sum_{i=0}^n m \rho^i}\right)^d > m^{-d}(1-\rho)^d.$$

It follows that $\ell_m(q) \ge m^{-d}(1-\rho)^d$.

Next assume that $q \ge m + 1$. Then for any $n \in \mathbb{N}$,

$$q^n - \sum_{i=0}^{n-1} m q^i = rac{q^n (q-1-m) + m}{q-1} \geq rac{(q-1-m) + m}{q-1} = 1.$$

It follows that $|P(q)| \ge 1$ for any polynomial P with degree ≥ 1 and coefficients in $\{0, \pm 1, \ldots, \pm m\}$. Hence $\ell_m(q) \ge 1$. We have seen that $\ell_m(q) > 0$ if q is Pisot or $q \ge m + 1$. In 1998, Erdős, Joó and Komornik raised the following

Question: whether or not $\ell_m(q) = 0$ for any non-Pisot number $q \in (1, m + 1)$?

Previous partial results on $\ell_m(q)$ before 2013

- (Drobot, 1973) If $q \in (1, m + 1)$ does not satisfy an algebraic equation with coefficients $0, \pm 1, \ldots, \pm m$, then $\ell_m(q) = 0$.
- (Bugeaud, 1996) if q is not a Pisot number, then $\ell_m(q) = 0$ when m is sufficiently enough.
- (Erdös and Komornik, 1998) $\ell_m(q) = 0$ if q is not a Pisot number and $m \ge \lceil q q^{-1} \rceil + \lceil q 1 \rceil$, where $\lceil x \rceil$ denotes the smallest integer $\ge x$.
- (Sidorov and Solomyak, 2011) if q ∈ (1, m + 1) and q is not a Perron number, then l_m(q) = 0. Recall that an algebraic integer q > 1 is called a **Perron number** if each of its conjugates is less than q in modulus.

Theorem (Akiyama-Komornik 2013, F. 2016)

 $\ell_m(q) = 0 \iff q$ is a non-Pisot number in (1, m + 1).

Remark: Let $q \in (1, m + 1)$.

• Akiyama-Komornik 2013:

 $X_m(q) - X_m(q)$ has no finite accumulation pts $\iff q$ is Pisot.

• F. 2016:

 $\ell_m(q) > 0 \iff X_m(q) - X_m(q)$ has no finite accumulation pts.

Corollary (Akiyama-Komornik 2013, F. 2016)

 $X_m(q)$ is a Delone set in $[0,\infty) \iff q$ is a Pisot number in (1,m+1).

Hence Question A (i.e. when $X_D(q)$ is Delone) has been well understood in the case when $D = \{0, 1, ..., m\}$.

Q: what can we say about the other cases that $D \neq \{0, 1, \dots, m\}$?

Remark: For each c > 0, $X_{cD}(q) = cX_D(q)$. Hence

 $X_D(q)$ is Delone $\iff X_{cD}(q)$ is Delone.

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ▲ ■ ▶ ● ■ ⑦ < ◎ 11/20</p>

Question A in the setting of IFS.

• Multiplying D by a constant if necessary, we may assume that

$$0 = a_1 < a_2 < \ldots < a_m = 1 - q^{-1}$$

are the elements of D.

• Consider the iterated function system

$$\Phi = \{\phi_i(x) = x/q + a_i\}_{i=1}^m.$$

Let K be the attractor of Φ , i.e., K is the unique nonempty compact such that

$$K = \bigcup_{i=1}^{m} \phi_i(K).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question A in the setting of IFS.

It is easy to see that $\mathcal{K} \subset [0,1]$ and $0, 1 \in \mathcal{K}$.

By definition, $X_D(q)$ is Delone if and only if

- K = [0, 1];
- Φ satisfies the weak separation condition, i.e. 0 is not an accumulation point of $X_D(q) X_D(q)$.

By [F. 2016], if K = [0, 1] then Φ satisfies the weak separation condition $\iff \Phi$ satisfies the finite type condition (i.e. $X_D(q) - X_D(q)$ has no finite accumulation points).

Question A: Charaterize (q, D) so that the IFS $\Phi = \{x/q + a\}_{a \in D}$ satisfies the finite type condition, and has [0, 1] as its attractor.

Let
$$q>1$$
 and $D=\{a_i\}_{i=1}^m$ with $0=a_1 < a_2 < \cdots < a_m = 1-q^{-1}$

An easy fact:

$$K = [0,1] \iff a_{i+1} - a_i \le q^{-1}$$
 for all $i = 1, \ldots, m-1$.

٠

Our results: a necessary condition

From now on we always assume that q > 1 and $D = \{a_i\}_{i=1}^m$ satisfies

$$0 = a_1 < a_2 < \dots < a_m = 1 - q^{-1}$$
 and
 $a_{i+1} - a_i \le q^{-1}$ for all $i = 1, \dots, m - 1$.

Theorem

Suppose that $X_D(q)$ is a Delone set in $[0,\infty)$. Then q is a Perron number, and $a_i \in \mathbb{Q}(q)$.

Recall that a Perron number is a positive algebraic integer λ whose algebraic conjugates are strictly less than λ in modulus.

Idea of the proof: build suitable substitutions by using the finite type condition of IFS, and to improve a result of [F. 2003].

A sufficient condition: If q is Pisot and $a_i \in \mathbb{Q}(q)$ for all i, then $X_D(q)$ is Delone in $[0, \infty)$.

The proof is similar to that for the case when $D = \{0, 1, \dots, m\}$.

Similar to the question of Erdős-Joó-Komornik, one may ask

Question: Under our general assumptions on (q, D), do we always have the implication:

 $X_D(q)$ is Delone in $[0,\infty) \Longrightarrow q$ is Pisot?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Theorem

- Suppose that 2 ≤ #D ≤ 4 and X_D(q) is Delone in [0,∞). Then q is Pisot.
- For each m ≥ 5, there exists (q, D) with #D = m such that q is not Pisot, but X_D(q) is Delone in [0,∞).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem

Suppose that $X_D(q)$ is Delone in $[0,\infty)$. If one of the following holds:

• $cD \subset \mathbb{Q}$ for some c > 0, or

•
$$a_{i+1} - a_i \le 1/(2q)$$
 for all *i*,

then q is Pisot.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Below we give an examples of (q, D) with #D = 5 such that q is not Pisot but $X_D(q)$ is Delone.

Example

Let $q \approx 4.83442$ be the largest root of $x^5 - 4x^4 - 3x^3 - 4x^2 - 4x - 4$. Let $D = \{a_i\}_{i=1}^5$ be given by

Then $X_D(q)$ is Delone. In this example, q is non-Pisot and non-Salem.

The conjugates of $q \approx 0.28501 \pm 0.97678i$, $-0.70222 \pm 0.55321i$

Thank you for your attention !!!

