
Minimal degree of an algebraic number with
respect to a number field containing it

Artūras Dubickas (Vilnius University)

Liege, 2023

Artūras Dubickas (Vilnius University) Minimal degree of an algebraic number



Definition

Let β be an algebraic number of degree d > 2 over the field of
rational numbers Q, and let L be a number field containing β,

so
that

Q(β) ⊆ L.

In the recent paper

C.-M. Park and S. W. Park, Minimal degrees of
algebraic numbers with respect to primitive elements, Int. J.
Number Theory 18 (2022), 485–500

the minimal degree of β with respect to the field L is defined as
the smallest degree of a polynomial f ∈ Q[x ] such that β = f (α)
for some α ∈ L which is the primitive element of L over Q, i.e.
L = Q(α).
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Some simple observations

Throughout, we denote the minimal degree of β with respect to
the field L by degL(β).

By the definition, it is clear that

degL(β) = degL(a + bβ) (1)

for any rational numbers a and b 6= 0.
As indicated in Park & Park, the minimal degree of β with respect
to L in some sense represents the shortest representation of an
algebraic number in a field.
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Example

For example, if β =
√

2 and L = Q(
√

2,
√

3,
√

5) then,

by the
inequality which we show below,

degL(β) > [L : Q(β)] = 4.

The example of the generator

α =
√

3 + 3
√

5− 5
√

6 +
√

10

of L and the representation

√
2 = 1

11760
(
α4 − 416α2 + 16804

)
with polynomial of degree 4 shows that

degL(β) = 4.
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Some simple observations

Apparently, the quantity degL(β) as such was not considered
before this paper,

although in

P. Drungilas and A. Dubickas, Reducibility of
polynomials after a polynomial substitution, Publ. Math.
Debrecen 96 (2020), 185–194.

we investigated a problem raised by Ulas (2019) and used the
methods that can be useful in studying the minimal degree of an
algebraic number with respect to the field containing it.
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Basic inequality

Set
D = [L : Q(β)].

We trivially have degL(β) = 1 if D = 1, since then β itself is a
generator of L over Q, so β = β with f (x) = x , which is a
polynomial of degree 1.
We claim that for any D > 2 we must have

degL(β) > D. (2)
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Its proof

Indeed, suppose β = f (α) for some f ∈ Q[x ] and some α ∈ L
satisfying L = Q(α).

Since

[Q(α) : Q] = [Q(α) : Q(β)] · [Q(β) : Q] = Dd ,

α is of degree dD over Q.
Then, the conjugates of β are all of the form f (αj), where αj ,
j = 1, . . . , dD, are the conjugates of α1 = α over Q. Since β is of
degree d over Q, the list f (αj), j = 1, . . . , dD, contains exactly d
distinct elements and each of them occurs exactly D times. By the
fundamental theorem of algebra, at most deg f numbers f (cj) for
distinct cj ∈ C can be equal. Thus, D 6 deg f , which completes
the proof of (2).
(A slightly different proof of (2) is given in Park & Park.)
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First result

Our first result shows that equality in (2) always holds for
d = D = 2.

Theorem 1

Let K be a quadratic extension of Q and let L be a quadratic
extension of K. Then, for each quadratic element β ∈ K, we have
degL(β) = 2.
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Explanation

In Park & Park, Theorem 1 has been established in the case when
L/Q is a Galois extension.

In general, for a quartic extension L of Q the Galois group
Gal(L/Q) can be C4,V4,D8,A4 or S4. However, for
Gal(L/Q) ∈ {A4,S4} the quartic field L does not contain a
quadratic subfield K .
Indeed, if it does, then L is generated by the root of g(x2), where
g ∈ Q[x ] is quadratic, and hence Gal(L/Q) ∈ {C4,V4,D8}; see,
e.g., Awtray and Jakes (2020).
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Explanation (continuation)

Consequently, C4,A4,D8 are the three possibilities that may occur
for Gal(L/Q) under assumptions of Theorem 1.

The previous result (when L/Q is a Galois extension) covers the
cases Gal(L/Q) = C4 (the cyclic group of order 4) and
Gal(L/Q) = V4 (the Klein 4-group).

In addition to those two cases, Theorem 1 covers the only
remaining possible case when L is not a Galois extension of Q and
Gal(L/Q) = D8 (the dihedral group of order 8, which in some
literature is denoted by D4).
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Inequality becomes equality for some extensions

Note that for each algebraic number β of degree d > 2 there is a
number field L satisfying [L : Q(β)] = D for which equality in (2)
holds.

Indeed, since β 6= 0, by Hilbert’s irreducibility theorem, there are
infinitely many m ∈ Z for which xD −mβ is irreducible over the
field Q(β). For any of those m 6= 0 it follows that α = (mβ)1/D is
a generator of the field

L = Q(β, α) = Q(α),

and hence β = 1
mα

D (so f (x) = xD/m), which implies
degL(β) = D by (2).
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In general the inequality should be strict?

However, it seems very likely that for a ‘random’ β of degree d > 3
and a ‘random’ degree D extension L of Q(β) one should expect
the strict inequality degL(β) > D.

The problem is difficult, since even in simplest cases it gives some
complicated diophantine equations, which apparently have no
solutions, but there are no methods to treat them. In Park & Park
for some special extensions they used elliptic curves, but the results
are very special and very limited.
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In Park & Park
for some special extensions they used elliptic curves, but the results
are very special and very limited.
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Cubic number in a quadratic extension

From now on, we will consider the case D = 2 only. We first
investigate the pair (d ,D) = (3, 2) and show the existence of many
cubic numbers β for which there are infinitely many quadratic
extensions L of Q(β) such that degL(β) > 2.

Recall that the trace of an algebraic number is the sum of its
algebraic conjugates over Q.

In view of (1) it suffices to consider algebraic integers β of trace
zero.
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Cubic number in a quadratic extension

Theorem 2

Let β be a cubic algebraic integer with trace zero and minimal
polynomial x3 − kx − q, where k ∈ Z and q ∈ Z∗.

Assume that at
least one of the following conditions holds:
(i) 4k3 − 27q2 > 0;
(ii) k is odd and q 6≡ 2 (mod 4);
(iii) k, q are both even and k ≡ 2 (mod 4) or q ≡ 2 (mod 4);
(iv) k is divisible by 4 and q is odd;
(v) k ≡ 1 (mod 4) and q ≡ 2 (mod 4);
Then, there are infinitely many quadratic extensions L of Q(β)
such that degL(β) > 2.
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Totally real algebraic numbers

Recall that an algebraic number β is called totally real if its all
conjugates over Q are real.

The condition (i) of Theorem 2 means
that the discriminant of the polynomial x3 − kx − q is positive,
which is the case if and only if all three of its roots are real. Thus,
part (i) combined with (1) implies that for each totally real cubic
algebraic number β there are infinitely many quadratic extensions
L of Q(β) for which degL(β) > 2.

The same is true for all totally real algebraic numbers β of degree
d > 3:

Theorem 3

For each totally real algebraic number β of degree d > 3 there are
infinitely many quadratic extensions L of Q(β) such that
degL(β) > 2.
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Cubic algebraic numbers

It seems very likely that Theorem 3 holds for every algebraic
number of degree d > 3, but our approach in the case d > 4 leads
to some complicated diophantine equations that are very difficult
to treat.

Towards completing the cubic case we will also show the following.

Theorem 4

For each cubic algebraic integer β satisfying β3 = kβ + q with
k, q ∈ Z the conclusion of Theorem 2 is true except possibly for
some pairs (k, q) ∈ Z2 for which there is an integer m > 0 such
that

k∗ = k2−2m ≡ 3 (mod 4) and q∗ = q2−3m ≡ 2 (mod 4). (3)
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Explanation

So far, some examples of irrational algebraic numbers β and
quadratic extensions L of K = Q(β) for which degL(β) > 2 only
appear in Park & Park and only for some special quartic fields K .

For instance, this is the case for β =
√

2 +
√

3 and
L = Q(

√
2,
√

3,
√

5).

Our Theorem 1 shows that there are no such quadratic β, while
Theorems 2, 3 and 4 provide a large class of such examples.
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Relation to other work

In fact, one can derive the existence of such β of degree d > 3 in
the case when

Q + βQ∗ ∩Q(β)2 = ∅, (4)

where Q + βQ∗ consists of all possible sums a + bβ with rational
numbers a and b 6= 0.
This question has been considered in Drungilas & Dubickas (2020)
in a completely different context: for a given polynomial f ∈ Q[x ]
which is irreducible over Q find g ∈ Q[x ] of smallest possible
degree such that the composition polynomial f (g(x)) is reducible
over Q. This trivially holds for g(x) = f (x) + x , since f (f (x) + x)
is divisible by f (x); see, e.g.,
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Relation to other work: some literature

F. Lemmermeyer, Composite values of irreducible
polynomials, Elem. Math. 74 (2019), 36–37.

M. Ulas, Is every irreducible polynomial reducible after a
polynomial substitution? J. Number Theory 202 (2019),
37–59.

A similar question on whether, for a fixed rational a 6= 0 and cubic
algebraic number β, the set

Q + aβ ∩Q(β)2

is empty or not has been considered in

F. Lemmermeyer, Binomial squares in pure cubic number
fields, J. Théor. Nombres Bordeaux, 24 (2012), 691–704.
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Relation to other work

In particular, we have shown in Drungilas & Dubickas (2020) that
(4) does not hold for all β of degree at most 3.

Observe that for any d > 4 there exist β of degree d for which (4)
does not hold.

For instance, for d even we can take β satisfying βd = β + 1, since
then 1 + β is the square of βd/2 ∈ Q(β), while for d odd we can
take β = 21/d , since then 2β is the square of β(d+1)/2 ∈ Q(β).
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Relation to other work

On the other hand, we showed in that (4) holds, e.g., for
β = (1 + i)/

√
2 of degree 4.

By the next proposition, this implies
that degL((1 + i)/

√
2) > 2 for each

L = Q(β,
√

B) = Q(i ,
√

2,
√

B),

where B is a square-free integer such that
√

B /∈ Q(β).

Proposition 1

Let β be an algebraic number of degree d > 4 satisfying (4). Then,
for each square-free integer B such that

√
B /∈ Q(β) the field

L = Q(β,
√

B) is a quadratic extension of Q(β) and degL(β) > 2.
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Construction of a class of non-squares

The important element in the proofs of Theorems 2, 3 and 4 is the
next proposition which is slightly more general than that above:

Proposition 2

Let β be an algebraic number of degree d > 3. Suppose that there
exists γ ∈ Q(β) such that

(a + bβ)γ /∈ Q(β)2 (5)

for all rational numbers a, b, not both zeroes. Then, there is an
infinite sequence of prime numbers

p1 < p2 < p3 < . . .
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An ingredient for the proofs of Theorems 2 and 4

In the proofs of Theorems 2 and 4 we used a classical result of
Legendre:

Lemma 5

Let a, b, c be three nonzero integers, not all of the same sign, and
such that abc is square-free. Then, the Diophantine equation

ax2 + by2 + cz2 = 0

is solvable in integers x , y , z, not all zero, if and only if −bc, −ca,
−ab are quadratic residues of a, b, c, respectively.
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Proof of Theorem 3 (when β is totally real)

The main ingredient is the next lemma.

Lemma 6

Let β be a totally real algebraic number of degree d > 3. Then,
there is γ ∈ Q(β) of degree d such that for any rational numbers
a, b, not both zeroes, the number (a + bβ)γ is not a square in the
field Q(β).
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Proof of Lemma 6

Fix β of degree d . By shifting β by a rational number, if necessary,
we can assume without restriction of generality that its trace is
zero.

Let σ1, . . . , σd be the d distinct embeddings of the field
K = Q(β) into C. For each α ∈ K we define

Trace(α) :=
n∑

j=1
σj(α).

This trace function satisfies the property of the linear mapping

Trace(u1α1+· · ·+umαm) = u1Trace(α1)+· · ·+umTrace(αm) (6)

for ui ∈ Q and αi ∈ K . If α lies in a proper subfield of K , then
Trace(α) is equal to [K : Q(α)] multiplied by the trace of α.
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Proof of Lemma 6 (continuation)

Now, for each k ∈ N we set

tk := Trace(βk) ∈ Q.

Let f ∈ Q[x ] be the minimal (monic) polynomial of β over Q. We
consider two cases, first, when f (x) = g(x)2 for some g ∈ Q[x ],
and, second, when f is not of such form.

We begin with the latter case. It is clear that tk > 0 for k even,
since the number βk is totally positive for such k. Set

γ := − t2
d −

t3
t2
β + β2 ∈ Q(β). (7)
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Proof of Lemma 6 (continuation)

Recall that t1 = 0 by the assumption on β. With the choice of γ
as in (7), by (6), we obtain Trace(γ) = −t2 − 0 + t2 = 0.

Likewise, by (6),

Trace(βγ) = Trace
(
− t2

d β −
t3
t2
β2 + β3) = 0− t3 + t3 = 0.

By Trace(β) = Trace(βγ) = 0 and (6), for any a, b ∈ Q it follows
that

Trace((a + bβ)γ) = aTrace(β) + bTrace(βγ) = 0.

Note that the trace of each nonzero α ∈ Q(β)2 must be positive,
because such α is totally positive. Hence, Trace(α) > 0 for each
nonzero α ∈ Q(β)2. But we already showed that
Trace((a + bβ)γ) = 0, so (a + bβ)γ /∈ Q(β)2, since a + bβ 6= 0
and γ 6= 0 by (7).
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Proof of Lemma 6 (continuation)

It remains to show that γ is of degree d .

If not, then for some
conjugate β′ 6= β of β we must have

− t2
d −

t3
t2
β + β2 = − t2

d −
t3
t2
β′ + β′2.

This is equivalent to β + β′ = t3/t2. Since the trace of β is zero,
this is only possible if t3 = 0. Hence, β + β′ = 0, that is, −β is a
conjugate of β, which means that f (x) = g(x)2 for some
g ∈ Q[x ]. This is not allowed by our assumption on f , which
completes the proof of the lemma in the second case.
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Proof of Lemma 6 (continuation)

Now, we consider the first case, when f (x) = g(x)2 for some
g ∈ Q[x ].

Then, d must be even, so d > 4. This time, we select

γ := − t2
d −

g0t4
t2

β + β2 + g0β
3, (8)

where g0 ∈ N will be chosen later. Since f (x) = g(x)2, we clearly
have t1 = t3 = 0, and so Trace(γ) = −t2 − 0 + t2 + 0 = 0.
Similarly,

Trace(βγ) = Trace
(
− t2

d β−
g0t4
t2

β2+β3+g0β
4) = 0−g0t4+0+g0t4 = 0.
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Proof of Lemma 6 (continuation)

As above, we deduce that (a + bβ)γ /∈ Q(β)2, so it remains to
show that γ is of degree d .

If not, then for some conjugate β′ 6= β
of β we must have

− t2
d −

g0t4
t2

β + β2 + g0β
3 = − t2

d −
g0t4
t2

β′ + β′2 + g0β
′3.

This is equivalent to

g0(β2 + β′2 + ββ′ − t4/t2) + β + β′ = 0. (9)
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Proof of Lemma 6 (continuation)

As above, we deduce that (a + bβ)γ /∈ Q(β)2, so it remains to
show that γ is of degree d . If not, then for some conjugate β′ 6= β
of β we must have

− t2
d −

g0t4
t2

β + β2 + g0β
3 = − t2

d −
g0t4
t2

β′ + β′2 + g0β
′3.

This is equivalent to

g0(β2 + β′2 + ββ′ − t4/t2) + β + β′ = 0. (9)
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Proof of Lemma 6 (completion)

However, we can always choose g0 ∈ N so that (9) does not hold,
unless there exists a conjugate β′ of β such that β′ 6= β and the
numbers β2 + β′2 + ββ′ − t4/t2 and β + β′ are both equal to zero.

But in that case we must have β′ = −β and so
β2 + β′2 + ββ′ = β2 = t4/t2. Therefore, β is a rational or a
quadratic number, which is not the case. This shows that with an
appropriate choice of g0 ∈ N the number γ defined in (8) is of
degree d , and finishes the proof of the lemma.
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Completion of the proof of Theorem 3

Proof of Theorem 3.
Fix a totally real β of degree d > 3 and select any γ ∈ Q(β) as
claimed in Lemma 6. The assertion of the theorem follows by
Proposition 2.
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