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Substitutive sequences

I A is a finite alphabet.
I ϕ : A∗ → A∗ is a substitution.
I We always assume that substitutions are growing, i.e.

limn→∞ |ϕ
n(a)| = ∞ for a ∈ A.

I A letter a ∈ A is prolongable if ϕ(a) = av for some v ∈ A∗;
it gives rise to ϕω(a) = avϕ(v) · · · . Such sequences are
called purely substitutive.

I A letter a ∈ A is backwards prolongable if ϕ(a) = va for
some v ∈ A∗; it gives rise to ωϕ(a) = · · ·ϕ(v)va

I A sequence is substitutive if it arises as the image of a
purely substitutive sequence by a coding.

I The language L(x) of a sequence x ∈ Aω is its set of factors.



Substitutive sequences as dynamical systems

I Aω is a dynamical system with respect to the shift map (a
compact space X with a continuous self-map).

I A subsystem is a nonempty closed subset invariant under
the shift.

I The closed orbit Orb(x) of x ∈ Aω consists of y ∈ Aω such
that L(y) ⊂ L(x). These subsystems are called transitive.

I A system is minimal if it has no proper subsystems.
I Call a system substitutive/automatic if it arises as the

closed orbit of a substitutive/automatic sequence.
I For a substitution ϕ : A∗ → A∗, define the system Xϕ to

consist of z ∈ Aω such that every w ∈ L(z) is a factor of
ϕn(a) for some n ≥ 0, a ∈ A.

I If ϕ is primitive, then Xϕ is minimal.
I If Xϕ is minimal, then it is subsitutive, and in fact the

substitution can be chosen primitive.



Theorem A

Aim: describe all (transitive) subsystems of substitutive
systems.

Theorem A
I Every transitive subsystem of a substitutive system is

substitutive.
I Every transitive subsystem of a k-automatic system is

k-automatic.



Theorem A

Aim: describe all (transitive) subsystems of substitutive
systems.

Theorem A
I Every transitive subsystem of a substitutive system is

substitutive.
I Every transitive subsystem of a k-automatic system is

k-automatic.



Technical assumptions on the substitution

We call a substitution ϕ : A∗ → A∗ idempotent if for every
a,b ∈ A and n ≥ 1 the following holds:
I b appears in ϕ(a) iff b appears in ϕn(a).
I b appears at least twice in ϕ(a) iff b appears at least twice

in ϕn(a).
I the initial letter of ϕ(a) is prolongable.
I if a appears in ϕ(a), if b is the last letter of ϕ(a) such that

a appears in ϕ(b), and if c is the last letter of ϕ(b) such
that b appears in ϕ(c), then b = c.

Reduction to idempotent substitutions

I Every substitution has a power ϕn that is idempotent.
I If Xϕ is transitive, then Xϕ = Xϕn .
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Minimal subsystems

Minimal subsystems

I A substitutive system has only finitely many minimal
subsystems.

I Assume ϕ : A∗ → A∗ is idempotent. Then every minimal
subsystem of X is of the form

Xb = {x ∈ Aω | every w ∈ L(x) is a factor of some ϕn(b)}

for some b ∈ A.



Example 1

I A = {0, 1, 2, 3}, ϕ : A∗ → A∗,

ϕ(0) = 12, ϕ(1) = 11, ϕ(2) = 23, ϕ(3) = 32.

I X = Xϕ. Aim: describe all (transitive) subsystems of X.
I X0 = X, X1 = {1ω}, X2 = X3 = TM (the Thue–Morse

system on letters 2, 3).
I y = ωϕ(1)ϕω(2) = · · · 1111.23323223 . . . .

I For n ∈ Z, let y[n,∞) = ynyn+1 · · · and Yn = Orb(y[n,∞)).
I Y0 = Y1 = Y2 = · · · = TM.
I For n < 0, Yn is the union of TM and n extra points:

y−n 7→ y−(n−1) 7→ · · · 7→ y−1 7→ y0 ∈ TM.
I The subsystems of X are the following ones:

X,X1,TM and Yn for n < 0



Example 2

I A = {0, 1, 2, 3}, τ : A∗ → A∗,

τ(0) = 01023, τ(1) = 12, τ(2) = 22, τ(3) = 33.

I X = Xτ. Aim: describe all (transitive) subsystems of X.
I X0 = X, X1 = {12ω, 2ω}, X2 = {2ω}, X3 = {3ω}.
I Let Uk = {2n3ω | n ≤ k}, Vk = {3n2ω | n ≤ k}, k ≥ 0.
I Put v = 01, w = 23,

z = · · · τ2(v)τ(v)v.0wτ(w)τ2(w) . . .

= · · · 010231201.023223224342838 · · ·

I Zn = Orb(z[n,∞)) = Orb(z[n,∞)) ∪ {3k2ω, 2k3ω | k ≥ 0}.
I The transitive subsystems of X are the following ones:

X,X1,Uk,Vk for k ≥ 0,Zn for n ∈ Z



Theorem B

Theorem B (simplified)
Let ϕ : A∗ → A∗ be an idempotent substitution. Let y ∈ Xϕ and
let Y be the orbit closure of y. Then one of the following
conditions holds:

1. either Y = Xb for some b ∈ A;

2. or there exist a backwards prolongable letter a and a
prolongable letter b such that y is a suffix of ωϕ(a)ϕω(b).

3. or there exists a letter a such that ϕ(a) = vaawa for some
words va and wa such that wa , ε and y is a suffix of

· · ·ϕ2(va)ϕ(va)vaawaϕ(wa)ϕ2(wa) · · · .

Corollary
Either Y = Xb or y is itself substitutive.
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Cobham’s theorem

Theorem (Cobham, 1969)
If k, l ≥ 2 are mutiplicatively independent, then a sequence is
simultaneously k-automatic and l-automatic if and only if it is
ultimately periodic.

Let k, l ≥ 2 be multiplicatively independent, let x be a
k-automatic sequence and let y be an l-automatic. Assume x, y
are not ultimately periodic.

Philosophy (Shallit)
Not only is x , y, but the common factors of x and y cannot be
too complicated.

In fact Mol–Rampersad–Shallit–Stipulanti (2018) and Krawczyk
(2023) got explicit bounds on the length of a common prefix.
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Example: what kind of common factors can one get?

I A = {0, 1, 2}.
I ϕ : A∗ → A∗, ϕ(0) = 012, ϕ(1) = 111, ϕ(2) = 222.
I x = ϕω(0) = 01213231929127227 · · · is 3-automatic.

I τ : A∗ → A∗, τ(0) = 0121, τ(1) = 1111, τ(2) = 2222.
I y = τω(0) = 0121524120216180264 · · · is 4-automatic.
I Xϕ = Orb(x) ∪ {2n1ω | n ≥ 0} ∪ {1n2ω | n ≥ 0}.
I Xτ = Orb(y) ∪ {2n1ω | n ≥ 0} ∪ {1n2ω | n ≥ 0}.
I The common factors of x and y are exactly the words in

L(ω12ω) ∪ L(ω21ω) ∪ L(01213).
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Finitary version of Cobham’s theorem

Theorem C
Let k, l ≥ 2 be multiplicatively independent integers, let A be an
alphabet, and let U ⊂ A∗. The following conditions are
equivalent:

(a) there exist a k-automatic sequence x and an l-automatic
sequence y such that U is the set of common factors of x
and y;

(b) the set U is a finite union of sets of the form L(ωvuwω),
where u, v,w are (possibly empty) words over A.

It is easy to show that the second property implies the first one.
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Proof of the finitary version of Cobham’s theorem

I k, l ≥ 2 are multiplicatively independent
I x ∈ Aω is k-automatic, X = Orb(x)

I y ∈ Aω is l-automatic, Y = Orb(y).

Step I
Any z ∈ X ∩Y is ultimately periodic.

Proof: Let Z = Orb(z) ⊂ X ∩Y. By Theorem A there exists a
k-automatic sequence x′ and an l-automatic sequence y′ such
that Z = Orb(x′) = Orb(y′). By Fagnot’s generalisation of
Cobham’s theorem x′, y′ and z are ultimately periodic.
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Proof of the finitary version of Cobham’s theorem

We call a nonempty factor u of x cyclic if uω ∈ X. Since X has
only finitely many minimal subsystems, it has finitely many
primitive cyclic factors.

Step II
Let u, v,w ∈ A∗ and let S = {n ≥ 0 | vunw ∈ L(X)}. Then

1. either S = N, and moreover in this case either v is a suffix
or w is a prefix of a power of u;

2. or S is a finite union of sets of the form {akmn + b | n ≥ 0}
for some a,b ∈ Q, m ≥ 1.
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Proof of the finitary version of Cobham’s theorem

Corollary
If v is not a suffix and w is not a prefix of a power of u, then
vunw is a common factor of x and y only for finitely many n.

Proof: Use the description of the set of n such that vunw is a
factor of x (resp. y) given in Step II. Such sets have finite
intersections since akn + blm = c has only finitely many
solutions in n,m.

These steps are effective.
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Proof of the finitary version of Cobham’s theorem

Step III: Conclude by compactness
Let ` be the maximal length of a primitive cyclic common
factor. Write any common factor t of x and y in the form

t = v0u
n1
1 v1u

n2
2 · · · vs−1u

ns
s vs (1)

for some integer s ≥ 0, integers ni ≥ 0, and words ui, vi such
that:

1. ui are primitive cyclic common factors,

2. vi have length ≤ `,

3. some minimality conditions to make the representation
unique.

One then proves that the values of n2, . . . ,ns−1 and s need to be
bounded by a constant not depending on t, since otherwise we
could construct an infinite non-ultimately periodic sequence in
X ∩Y, contradicting Steps I and II. It is easy to conclude.



Effectivity of the result

Question
Is the above theorem effective?

Theorem (Krawczyk, 2023)
There exists an algorithm that, given a k-automatic sequence x
and an l-automatic sequence y, produces a finite set of words
ui, vi,wi over A such that the set of common factors of x and y
is ⋃

i

L(ωviuiwω
i ).

More precisely, there exists a computable constant C
(depending only on k, l and the numbers of states of the
automata generating x and y) such that the lengths of ui, vi,wi
are bounded by C.
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