Substitutive systems and a finitary version of Cobham's theorem.

Jakub Byszewski

joint work with Jakub Konieczny and Elżbieta Krawczyk

Liège, 22 May 2023

A D F A 目 F A E F A E F A Q Q

Substitutive sequences

- \blacktriangleright \mathcal{A} is a finite alphabet.
- $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$ is a substitution.
- ► We always assume that substitutions are growing, i.e. $\lim_{n\to\infty} |\varphi^n(a)| = \infty$ for $a \in \mathcal{A}$.
- A letter a ∈ A is prolongable if φ(a) = av for some v ∈ A^{*}; it gives rise to φ^ω(a) = avφ(v) · · · . Such sequences are called purely substitutive.
- A letter a ∈ A is backwards prolongable if φ(a) = va for some v ∈ A*; it gives rise to ^ωφ(a) = ···φ(v)va
- A sequence is substitutive if it arises as the image of a purely substitutive sequence by a coding.
- ▶ The language $\mathcal{L}(\mathbf{x})$ of a sequence $\mathbf{x} \in \mathcal{R}^{\omega}$ is its set of factors.

Substitutive sequences as dynamical systems

- \mathcal{A}^{ω} is a dynamical system with respect to the shift map (a compact space X with a continuous self-map).
- ▶ A subsystem is a nonempty closed subset invariant under the shift.
- ▶ The closed orbit $\overline{\operatorname{Orb}(x)}$ of $x \in \mathcal{A}^{\omega}$ consists of $y \in \mathcal{A}^{\omega}$ such that $\mathcal{L}(y) \subset \mathcal{L}(x)$. These subsystems are called transitive.
- ▶ A system is minimal if it has no proper subsystems.
- Call a system substitutive/automatic if it arises as the closed orbit of a substitutive/automatic sequence.
- ► For a substitution $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$, define the system X_{φ} to consist of $z \in \mathcal{A}^{\omega}$ such that every $w \in \mathcal{L}(z)$ is a factor of $\varphi^n(a)$ for some $n \ge 0, a \in \mathcal{A}$.
- If φ is primitive, then X_{φ} is minimal.
- ► If X_{\(\varphi\)} is minimal, then it is substitutive, and in fact the substitution can be chosen primitive.

Aim: describe all (transitive) subsystems of substitutive systems.

Aim: describe all (transitive) subsystems of substitutive systems.

Theorem A

- Every transitive subsystem of a substitutive system is substitutive.
- Every transitive subsystem of a k-automatic system is k-automatic.

Technical assumptions on the substitution

We call a substitution $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$ idempotent if for every a, b $\in \mathcal{A}$ and n ≥ 1 the following holds:

- b appears in $\varphi(a)$ iff b appears in $\varphi^n(a)$.
- b appears at least twice in φ(a) iff b appears at least twice in φⁿ(a).
- the initial letter of $\varphi(a)$ is prolongable.
- if a appears in $\varphi(a)$, if b is the last letter of $\varphi(a)$ such that a appears in $\varphi(b)$, and if c is the last letter of $\varphi(b)$ such that b appears in $\varphi(c)$, then b = c.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Technical assumptions on the substitution

We call a substitution $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$ idempotent if for every a, b $\in \mathcal{A}$ and n ≥ 1 the following holds:

- b appears in $\varphi(a)$ iff b appears in $\varphi^n(a)$.
- b appears at least twice in φ(a) iff b appears at least twice in φⁿ(a).
- the initial letter of $\varphi(a)$ is prolongable.
- if a appears in $\varphi(a)$, if b is the last letter of $\varphi(a)$ such that a appears in $\varphi(b)$, and if c is the last letter of $\varphi(b)$ such that b appears in $\varphi(c)$, then b = c.

Reduction to idempotent substitutions

• Every substitution has a power φ^n that is idempotent.

• If X_{φ} is transitive, then $X_{\varphi} = X_{\varphi^n}$.

Minimal subsystems

- A substitutive system has only finitely many minimal subsystems.
- ▶ Assume $\varphi : \mathcal{A}^* \to \mathcal{A}^*$ is idempotent. Then every minimal subsystem of X is of the form

$$X_{b} = \{x \in \mathcal{H}^{\omega} \mid \text{ every } w \in \mathcal{L}(x) \text{ is a factor of some } \varphi^{n}(b)\}$$

for some $b \in \mathcal{A}$.

Example 1

- ► For n < 0, Y_n is the union of TM and n extra points: $y_{-n} \mapsto y_{-(n-1)} \mapsto \cdots \mapsto y_{-1} \mapsto y_0 \in TM.$
- ▶ The subsystems of X are the following ones:

 $X, X_1, TM and Y_n for n < 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Example 2

Z_n = Orb(z_{[n,∞)}) = Orb(z_{[n,∞)}) ∪ {3^k2^ω, 2^k3^ω | k ≥ 0}.
The transitive subsystems of X are the following ones:

 $X, X_1, U_k, V_k \text{ for } k \ge 0, Z_n \text{ for } n \in \mathbb{Z}$

Theorem B

Theorem B (simplified)

Let $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$ be an idempotent substitution. Let $y \in X_{\varphi}$ and let Y be the orbit closure of y. Then one of the following conditions holds:

- 1. <u>either</u> $Y = X_b$ for some $b \in \mathcal{A}$;
- 2. <u>or</u> there exist a backwards prolongable letter a and a prolongable letter b such that y is a suffix of ${}^{\omega}\varphi(a)\varphi^{\omega}(b)$.
- 3. <u>or</u> there exists a letter a such that $\varphi(\mathbf{a}) = \mathbf{v}_{\mathbf{a}}\mathbf{a}\mathbf{w}_{\mathbf{a}}$ for some words $\mathbf{v}_{\mathbf{a}}$ and $\mathbf{w}_{\mathbf{a}}$ such that $\mathbf{w}_{\mathbf{a}} \neq \boldsymbol{\epsilon}$ and y is a suffix of

$$\cdots \varphi^2(\mathrm{v_a}) \varphi(\mathrm{v_a}) \mathrm{v_aaw_a} \varphi(\mathrm{w_a}) \varphi^2(\mathrm{w_a}) \cdots$$

うして ふゆ く は く は く む く し く

Theorem B

Theorem B (simplified)

Let $\varphi \colon \mathcal{A}^* \to \mathcal{A}^*$ be an idempotent substitution. Let $y \in X_{\varphi}$ and let Y be the orbit closure of y. Then one of the following conditions holds:

- 1. <u>either</u> $Y = X_b$ for some $b \in \mathcal{A}$;
- 2. <u>or</u> there exist a backwards prolongable letter a and a prolongable letter b such that y is a suffix of ${}^{\omega}\varphi(a)\varphi^{\omega}(b)$.
- 3. <u>or</u> there exists a letter a such that $\varphi(a) = v_a a w_a$ for some words v_a and w_a such that $w_a \neq \epsilon$ and y is a suffix of

$$\cdots \varphi^2(\mathbf{v}_a) \varphi(\mathbf{v}_a) \mathbf{v}_a a \mathbf{w}_a \varphi(\mathbf{w}_a) \varphi^2(\mathbf{w}_a) \cdots$$

Corollary

Either $Y = X_b$ or y is itself substitutive.

Theorem (Cobham, 1969)

If $k, l \ge 2$ are mutiplicatively independent, then a sequence is simultaneously k-automatic and l-automatic if and only if it is ultimately periodic.

Theorem (Cobham, 1969)

If k, $l \ge 2$ are mutiplicatively independent, then a sequence is simultaneously k-automatic and l-automatic if and only if it is ultimately periodic.

Let k, l ≥ 2 be multiplicatively independent, let x be a k-automatic sequence and let y be an l-automatic. Assume x, y are not ultimately periodic.

Philosophy (Shallit)

Not only is $x \neq y$, but the common factors of x and y cannot be too complicated.

A D F A 目 F A E F A E F A Q Q

Theorem (Cobham, 1969)

If k, $l \ge 2$ are mutiplicatively independent, then a sequence is simultaneously k-automatic and l-automatic if and only if it is ultimately periodic.

Let k, l ≥ 2 be multiplicatively independent, let x be a k-automatic sequence and let y be an l-automatic. Assume x, y are not ultimately periodic.

Philosophy (Shallit)

Not only is $x \neq y$, but the common factors of x and y cannot be too complicated.

In fact Mol–Rampersad–Shallit–Stipulanti (2018) and Krawczyk (2023) got explicit bounds on the length of a common prefix.

•
$$\mathcal{A} = \{0, 1, 2\}.$$

• $\varphi : \mathcal{A}^* \to \mathcal{A}^*, \, \varphi(0) = 012, \, \varphi(1) = 111, \, \varphi(2) = 222.$
• $\mathbf{x} = \varphi^{\omega}(0) = 0121^3 2^3 1^9 2^9 1^{27} 2^{27} \cdots$ is 3-automatic.

$$\begin{array}{l} \blacktriangleright \ \mathcal{A} = \{0, 1, 2\}. \\ \blacktriangleright \ \varphi \colon \mathcal{A}^* \to \mathcal{A}^*, \ \varphi(0) = 012, \ \varphi(1) = 111, \ \varphi(2) = 222. \\ \vdash \ \mathbf{x} = \varphi^{\omega}(0) = 0121^3 2^3 1^9 2^9 1^{27} 2^{27} \cdots \text{ is 3-automatic.} \\ \vdash \ \tau \colon \mathcal{A}^* \to \mathcal{A}^*, \ \tau(0) = 0121, \ \tau(1) = 1111, \ \tau(2) = 2222. \\ \vdash \ \mathbf{y} = \tau^{\omega}(0) = 0121^5 2^4 1^{20} 2^{16} 1^{80} 2^{64} \cdots \text{ is 4-automatic.} \\ \vdash \ \mathbf{X}_{\varphi} = \operatorname{Orb}(\mathbf{x}) \cup \{2^n 1^{\omega} \mid n \ge 0\} \cup \{1^n 2^{\omega} \mid n \ge 0\}. \\ \vdash \ \mathbf{X}_{\tau} = \operatorname{Orb}(\mathbf{y}) \cup \{2^n 1^{\omega} \mid n \ge 0\} \cup \{1^n 2^{\omega} \mid n \ge 0\}. \end{array}$$

$$\begin{array}{l} \blacktriangleright \ \mathcal{R} = \{0, 1, 2\}. \\ \blacktriangleright \ \varphi \colon \mathcal{A}^* \to \mathcal{A}^*, \ \varphi(0) = 012, \ \varphi(1) = 111, \ \varphi(2) = 222. \\ \blacktriangleright \ x = \varphi^{\omega}(0) = 0121^3 2^3 1^9 2^9 1^{27} 2^{27} \cdots \text{ is 3-automatic.} \\ \vdash \ \tau \colon \mathcal{A}^* \to \mathcal{A}^*, \ \tau(0) = 0121, \ \tau(1) = 1111, \ \tau(2) = 2222. \\ \vdash \ y = \tau^{\omega}(0) = 0121^5 2^4 1^{20} 2^{16} 1^{80} 2^{64} \cdots \text{ is 4-automatic.} \\ \vdash \ X_{\varphi} = \operatorname{Orb}(x) \cup \{2^n 1^{\omega} \mid n \ge 0\} \cup \{1^n 2^{\omega} \mid n \ge 0\}. \\ \vdash \ X_{\tau} = \operatorname{Orb}(y) \cup \{2^n 1^{\omega} \mid n \ge 0\} \cup \{1^n 2^{\omega} \mid n \ge 0\}. \\ \vdash \ \text{The common factors of x and y are exactly the words in } \end{array}$$

$$\mathcal{L}(^{\omega}12^{\omega}) \cup \mathcal{L}(^{\omega}21^{\omega}) \cup \mathcal{L}(0121^3).$$

Let $k, l \geq 2$ be multiplicatively independent integers, let \mathcal{A} be an alphabet, and let $U \subset \mathcal{A}^*$. The following conditions are equivalent:

Let k, l ≥ 2 be multiplicatively independent integers, let \mathcal{A} be an alphabet, and let U $\subset \mathcal{A}^*$. The following conditions are equivalent:

 (a) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set of common factors of x and y;

A D F A 目 F A E F A E F A Q Q

Let k, l ≥ 2 be multiplicatively independent integers, let \mathcal{A} be an alphabet, and let U $\subset \mathcal{A}^*$. The following conditions are equivalent:

- (a) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set of common factors of x and y;
- (b) the set U is a finite union of sets of the form $\mathcal{L}(^{\omega}vuw^{\omega})$, where u, v, w are (possibly empty) words over \mathcal{A} .

うして ふゆ く は く は く む く し く

Let $k, l \geq 2$ be multiplicatively independent integers, let \mathcal{A} be an alphabet, and let $U \subset \mathcal{A}^*$. The following conditions are equivalent:

- (a) there exist a k-automatic sequence x and an l-automatic sequence y such that U is the set of common factors of x and y;
- (b) the set U is a finite union of sets of the form $\mathcal{L}(^{\omega}vuw^{\omega})$, where u, v, w are (possibly empty) words over \mathcal{A} .

It is easy to show that the second property implies the first one.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\blacktriangleright \ k,l \geq 2$ are multiplicatively independent
- $x \in \mathcal{R}^{\omega}$ is k-automatic, X = Orb(x)
- $y \in \mathcal{A}^{\omega}$ is l-automatic, $Y = \overline{Orb(y)}$.

A D F A 目 F A E F A E F A Q Q

- ▶ k, l ≥ 2 are multiplicatively independent
- $x \in \mathcal{A}^{\omega}$ is k-automatic, $X = \overline{Orb(x)}$
- $y \in \mathcal{R}^{\omega}$ is l-automatic, $Y = \overline{Orb(y)}$.

Step I

Any $z \in X \cap Y$ is ultimately periodic.

- ▶ k, l ≥ 2 are multiplicatively independent
- $x \in \mathcal{R}^{\omega}$ is k-automatic, X = Orb(x)
- $y \in \mathcal{A}^{\omega}$ is l-automatic, $Y = \overline{Orb(y)}$.

Step I

Any $z \in X \cap Y$ is ultimately periodic.

Proof: Let $Z = \overline{\operatorname{Orb}(z)} \subset X \cap Y$. By Theorem A there exists a k-automatic sequence x' and an l-automatic sequence y' such that $Z = \overline{\operatorname{Orb}(x')} = \overline{\operatorname{Orb}(y')}$. By Fagnot's generalisation of Cobham's theorem x', y' and z are ultimately periodic.

We call a nonempty factor u of x cyclic if $u^{\omega} \in X$. Since X has only finitely many minimal subsystems, it has finitely many primitive cyclic factors.

A D F A 目 F A E F A E F A Q Q

We call a nonempty factor u of x cyclic if $u^{\omega} \in X$. Since X has only finitely many minimal subsystems, it has finitely many primitive cyclic factors.

Step II

Let $u, v, w \in \mathcal{A}^*$ and let $S = \{n \ge 0 \mid vu^n w \in \mathcal{L}(X)\}$. Then

- 1. <u>either</u> $S = \mathbb{N}$, and moreover in this case either v is a suffix or w is a prefix of a power of u;
- 2. <u>or</u> S is a finite union of sets of the form $\{ak^{mn} + b \mid n \ge 0\}$ for some $a, b \in \mathbb{Q}, m \ge 1$.

うして ふゆ く 山 マ ふ し マ うくの

Corollary

If v is not a suffix and w is not a prefix of a power of u, then $vu^n w$ is a common factor of x and y only for finitely many n.

Proof: Use the description of the set of n such that $vu^n w$ is a factor of x (resp. y) given in Step II. Such sets have finite intersections since $ak^n + bl^m = c$ has only finitely many solutions in n, m.

A D F A 目 F A E F A E F A Q Q

Corollary

If v is not a suffix and w is not a prefix of a power of u, then $vu^n w$ is a common factor of x and y only for finitely many n.

Proof: Use the description of the set of n such that $vu^n w$ is a factor of x (resp. y) given in Step II. Such sets have finite intersections since $ak^n + bl^m = c$ has only finitely many solutions in n, m.

A D F A 目 F A E F A E F A Q Q

These steps are effective.

Step III: Conclude by compactness

Let ℓ be the maximal length of a primitive cyclic common factor. Write any common factor t of x and y in the form

$$t = v_0 u_1^{n_1} v_1 u_2^{n_2} \cdots v_{s-1} u_s^{n_s} v_s \tag{1}$$

for some integer $s\geq 0,$ integers $n_i\geq 0,$ and words $u_i,$ v_i such that:

- 1. u_i are primitive cyclic common factors,
- 2. v_i have length $\leq \ell$,
- 3. some minimality conditions to make the representation unique.

One then proves that the values of n_2, \ldots, n_{s-1} and s need to be bounded by a constant not depending on t, since otherwise we could construct an infinite non-ultimately periodic sequence in $X \cap Y$, contradicting Steps I and II. It is easy to conclude.

Effectivity of the result

Question

Is the above theorem effective?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Effectivity of the result

Question

Is the above theorem effective?

Theorem (Krawczyk, 2023)

There exists an algorithm that, given a k-automatic sequence x and an l-automatic sequence y, produces a finite set of words u_i, v_i, w_i over \mathcal{A} such that the set of common factors of x and y is

$$\bigcup_{i} \mathcal{L}({}^{\omega}v_{i}u_{i}w_{i}^{\omega}).$$

うして ふゆ く 山 マ ふ し マ うくの

Effectivity of the result

Question

Is the above theorem effective?

Theorem (Krawczyk, 2023)

There exists an algorithm that, given a k-automatic sequence x and an l-automatic sequence y, produces a finite set of words u_i, v_i, w_i over \mathcal{A} such that the set of common factors of x and y is

$$\bigcup_{\mathrm{i}} \mathcal{L}(^{\omega}\mathrm{v}_{\mathrm{i}}\mathrm{u}_{\mathrm{i}}\mathrm{w}_{\mathrm{i}}^{\omega}).$$

More precisely, there exists a computable constant C (depending only on k, l and the numbers of states of the automata generating x and y) such that the lengths of u_i, v_i, w_i are bounded by C.